The impact of heparin and direct thrombin inhibitors on cell-penetrating polymer siRNA transfection

IF 4.6 3区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Gene Therapy Pub Date : 2024-07-16 DOI:10.1038/s41434-024-00460-2
Lucas Mota, Max Zhu, John N. Tomeo, Melina Recarey, Nyah Patel, Leena Pradhan-Nabzdyk, Frank W. LoGerfo, Patric Liang
{"title":"The impact of heparin and direct thrombin inhibitors on cell-penetrating polymer siRNA transfection","authors":"Lucas Mota, Max Zhu, John N. Tomeo, Melina Recarey, Nyah Patel, Leena Pradhan-Nabzdyk, Frank W. LoGerfo, Patric Liang","doi":"10.1038/s41434-024-00460-2","DOIUrl":null,"url":null,"abstract":"Gene therapy using siRNA has become a promising strategy to achieve targeted gene knockdown for treatment of cardiovascular pathologies. However, efficient siRNA transfection often relies on cationic delivery vectors such as synthetic cell-penetrating polymers which are susceptible to interference by negatively charged molecules. Anticoagulants such as heparin, which is negatively charged and widely used in cardiovascular applications, may pose a significant barrier to effective siRNA delivery. We therefore conducted in vitro studies utilizing human smooth muscle and endothelial cells transfected with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β2-microglobulin (B2M) siRNA in the presence of heparin, argatroban, and bivalirudin in order to determine which anticoagulant therapy is most compatible for siRNA delivery. We observed that while heparin, at clinical doses, decreases the efficiency of siRNA targeted mRNA knockdown, mRNA knockdown is not inhibited in the presence of either argatroban or bivalirudin. Our data suggests that heparin should be avoided during siRNA therapy with cationic transfection agents, and argatroban and bivalirudin should be used in its stead.","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":"31 9-10","pages":"467-476"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41434-024-00460-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene therapy using siRNA has become a promising strategy to achieve targeted gene knockdown for treatment of cardiovascular pathologies. However, efficient siRNA transfection often relies on cationic delivery vectors such as synthetic cell-penetrating polymers which are susceptible to interference by negatively charged molecules. Anticoagulants such as heparin, which is negatively charged and widely used in cardiovascular applications, may pose a significant barrier to effective siRNA delivery. We therefore conducted in vitro studies utilizing human smooth muscle and endothelial cells transfected with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β2-microglobulin (B2M) siRNA in the presence of heparin, argatroban, and bivalirudin in order to determine which anticoagulant therapy is most compatible for siRNA delivery. We observed that while heparin, at clinical doses, decreases the efficiency of siRNA targeted mRNA knockdown, mRNA knockdown is not inhibited in the presence of either argatroban or bivalirudin. Our data suggests that heparin should be avoided during siRNA therapy with cationic transfection agents, and argatroban and bivalirudin should be used in its stead.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肝素和直接凝血酶抑制剂对细胞穿透聚合物 siRNA 转染的影响
使用 siRNA 进行基因治疗已成为一种很有前景的策略,可实现靶向基因敲除以治疗心血管疾病。然而,高效的 siRNA 转染通常依赖于阳离子递送载体,如合成的细胞穿透聚合物,这些载体容易受到带负电荷分子的干扰。肝素等带负电荷的抗凝剂被广泛应用于心血管领域,可能会严重阻碍 siRNA 的有效递送。因此,我们利用转染了甘油醛-3-磷酸脱氢酶(GAPDH)和β2-微球蛋白(B2M) siRNA 的人平滑肌和内皮细胞,在肝素、阿加曲班和比伐卢定存在下进行了体外研究,以确定哪种抗凝疗法最适合 siRNA 的递送。我们观察到,临床剂量的肝素会降低 siRNA 靶向 mRNA 的敲除效率,而阿加曲班或比伐卢定的存在则不会抑制 mRNA 的敲除。我们的数据表明,使用阳离子转染剂进行 siRNA 治疗时应避免使用肝素,而应使用阿加曲班和比伐卢定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gene Therapy
Gene Therapy 医学-生化与分子生物学
CiteScore
9.70
自引率
2.00%
发文量
67
审稿时长
4-8 weeks
期刊介绍: Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.
期刊最新文献
PCRX-201, a novel IL-1Ra gene therapy treatment approach for low back pain resulting from intervertebral disc degeneration. Bridging gene therapy and next-generation vaccine technologies. Retraction Note: Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations. Non-replicative herpes simplex virus genomic and amplicon vectors for gene therapy - an update. The disparate burden of infectious diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1