{"title":"Enhancing Generalizability in Biomedical Entity Recognition: Self-Attention PCA-CLS Model","authors":"Rajesh Kumar Mundotiya;Juhi Priya;Divya Kuwarbi;Teekam Singh","doi":"10.1109/TCBB.2024.3429234","DOIUrl":null,"url":null,"abstract":"One of the primary tasks in the early stages of data mining involves the identification of entities from biomedical corpora. Traditional approaches relying on robust feature engineering face challenges when learning from available (un-)annotated data using data-driven models like deep learning-based architectures. Despite leveraging large corpora and advanced deep learning models, domain generalization remains an issue. Attention mechanisms are effective in capturing longer sentence dependencies and extracting semantic and syntactic information from limited annotated datasets. To address out-of-vocabulary challenges in biomedical text, the PCA-CLS (Position and Contextual Attention with CNN-LSTM-Softmax) model combines global self-attention and character-level convolutional neural network techniques. The model's performance is evaluated on eight distinct biomedical domain datasets encompassing entities such as genes, drugs, diseases, and species. The PCA-CLS model outperforms several state-of-the-art models, achieving notable F\n<inline-formula><tex-math>$_{1}$</tex-math></inline-formula>\n-scores, including 88.19% on BC2GM, 85.44% on JNLPBA, 90.80% on BC5CDR-chemical, 87.07% on BC5CDR-disease, 89.18% on BC4CHEMD, 88.81% on NCBI, and 91.59% on the s800 dataset.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"1934-1941"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10599831/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
One of the primary tasks in the early stages of data mining involves the identification of entities from biomedical corpora. Traditional approaches relying on robust feature engineering face challenges when learning from available (un-)annotated data using data-driven models like deep learning-based architectures. Despite leveraging large corpora and advanced deep learning models, domain generalization remains an issue. Attention mechanisms are effective in capturing longer sentence dependencies and extracting semantic and syntactic information from limited annotated datasets. To address out-of-vocabulary challenges in biomedical text, the PCA-CLS (Position and Contextual Attention with CNN-LSTM-Softmax) model combines global self-attention and character-level convolutional neural network techniques. The model's performance is evaluated on eight distinct biomedical domain datasets encompassing entities such as genes, drugs, diseases, and species. The PCA-CLS model outperforms several state-of-the-art models, achieving notable F
$_{1}$
-scores, including 88.19% on BC2GM, 85.44% on JNLPBA, 90.80% on BC5CDR-chemical, 87.07% on BC5CDR-disease, 89.18% on BC4CHEMD, 88.81% on NCBI, and 91.59% on the s800 dataset.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system