Mina Moayeri, Shiva Irani, Marefat Ghaffari Novin, Iman Salahshourifar, Mohammad Salehi
{"title":"Expression of DDSR1 Long Non-Coding RNA and Genes Involved in the DNA Damage Response in Sperm with DNA Fragmentation.","authors":"Mina Moayeri, Shiva Irani, Marefat Ghaffari Novin, Iman Salahshourifar, Mohammad Salehi","doi":"10.1007/s43032-024-01640-6","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular mechanism responsible for sperm DNA fragmentation is not fully understood. Therefore, identifying genes related to the response to DNA damage is an important area of research. Recently, the role of long non-coding RNAs (LncRNAs), especially DNA damage-sensitive RNA1 (DDSR1) in male infertility has been highlighted. In this research, a protein-protein interaction network (PPIN) was constructed using the STRING database, and functional classification was conducted using webgestalt servers. Subsequently, a group of 40 males with a high degree of sperm DNA fragmentation (DFI ≥ 25%) was compared to a control group of 20 healthy males with a normal sperm DNA fragmentation rate (DFI < 25%). To assess gene expression, real-time polymerase chain reaction (PCR) analysis was performed on DNA samples obtained from both healthy and infertile males. Our findings revealed that infertile men with an abnormal DFI index showed significantly lower expression levels of the long noncoding RNA DDSR1, as well as the genes BRCA1, MRE11A, RAD51, and NBN, compared to the control group. Pathway analysis of the network proteins using Reactome indicated involvement in crucial cellular processes such as the cell cycle, DNA repair, meiosis, reproduction, and extension of telomeres. In conclusion, the downregulation of LncRNA and genes associated with the DNA damage response in males with an abnormal DFI suggests that these factors may contribute to the development of sperm DNA fragmentation and could potentially serve as diagnostic markers for further investigation in therapeutic interventions in the future.</p>","PeriodicalId":20920,"journal":{"name":"Reproductive Sciences","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43032-024-01640-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The molecular mechanism responsible for sperm DNA fragmentation is not fully understood. Therefore, identifying genes related to the response to DNA damage is an important area of research. Recently, the role of long non-coding RNAs (LncRNAs), especially DNA damage-sensitive RNA1 (DDSR1) in male infertility has been highlighted. In this research, a protein-protein interaction network (PPIN) was constructed using the STRING database, and functional classification was conducted using webgestalt servers. Subsequently, a group of 40 males with a high degree of sperm DNA fragmentation (DFI ≥ 25%) was compared to a control group of 20 healthy males with a normal sperm DNA fragmentation rate (DFI < 25%). To assess gene expression, real-time polymerase chain reaction (PCR) analysis was performed on DNA samples obtained from both healthy and infertile males. Our findings revealed that infertile men with an abnormal DFI index showed significantly lower expression levels of the long noncoding RNA DDSR1, as well as the genes BRCA1, MRE11A, RAD51, and NBN, compared to the control group. Pathway analysis of the network proteins using Reactome indicated involvement in crucial cellular processes such as the cell cycle, DNA repair, meiosis, reproduction, and extension of telomeres. In conclusion, the downregulation of LncRNA and genes associated with the DNA damage response in males with an abnormal DFI suggests that these factors may contribute to the development of sperm DNA fragmentation and could potentially serve as diagnostic markers for further investigation in therapeutic interventions in the future.
精子 DNA 断裂的分子机制尚未完全明了。因此,确定与 DNA 损伤反应相关的基因是一个重要的研究领域。最近,长非编码RNA(LncRNA),尤其是DNA损伤敏感RNA1(DDSR1)在男性不育症中的作用受到了关注。本研究利用 STRING 数据库构建了蛋白质-蛋白质相互作用网络(PPIN),并利用 webgestalt 服务器进行了功能分类。随后,将一组 40 名精子 DNA 高度碎片化(DFI ≥ 25%)的男性与对照组 20 名精子 DNA 碎片化率正常(DFI
期刊介绍:
Reproductive Sciences (RS) is a peer-reviewed, monthly journal publishing original research and reviews in obstetrics and gynecology. RS is multi-disciplinary and includes research in basic reproductive biology and medicine, maternal-fetal medicine, obstetrics, gynecology, reproductive endocrinology, urogynecology, fertility/infertility, embryology, gynecologic/reproductive oncology, developmental biology, stem cell research, molecular/cellular biology and other related fields.