Samuel R Smith, Eugene J Becker, Nathaniel B Bone, Jeffrey D Kerby, Joanna I Nowak, Jean-Marc Tadié, Victor M Darley-Usmar, Jean-Francois Pittet, Jaroslaw W Zmijewski
{"title":"METABOLIC AND BIOENERGETIC ALTERATIONS ARE ASSOCIATED WITH INFECTION SUSCEPTIBILITY IN SURVIVORS OF SEVERE TRAUMA: AN EXPLORATORY STUDY.","authors":"Samuel R Smith, Eugene J Becker, Nathaniel B Bone, Jeffrey D Kerby, Joanna I Nowak, Jean-Marc Tadié, Victor M Darley-Usmar, Jean-Francois Pittet, Jaroslaw W Zmijewski","doi":"10.1097/SHK.0000000000002419","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Background : Trauma and blood loss are frequently associated with organ failure, immune dysfunction, and a high risk of secondary bacterial lung infections. We aim to test if plasma metabolomic flux and monocyte bioenergetics are altered in association with trauma and related secondary infections. Methods : Plasma samples were collected from trauma patients at three time points: days 0, 3, and 7 postadmission. Metabolites (140) were measured in plasma from trauma survivors ( n = 24) and healthy control individuals (HC, n = 10). Further analysis within the trauma cohort included subsets of trauma/infection-negative (TIneg, n = 12) and trauma/infection-positive patients (TIpos, n = 12). The bioenergetic profile in monocytes was determined using mitochondrial and glycolytic stress tests. Results : In the trauma cohort, significant alterations were observed in 29 metabolites directly affecting 11 major metabolic pathways, while 34 metabolite alterations affected 8 pathways in 9, versus TIneg patients. The most altered metabolic pathways included protein synthesis, the urea cycle/arginine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, and carnitine compound family. In monocytes from trauma patients, reduced mitochondrial indices and loss of glycolytic plasticity were consistent with an altered profile of plasma metabolites in the tricarboxylic acid cycle and glycolysis. Conclusions : Our study highlights that the metabolic profile is significantly and persistently affected by trauma and related infections. Among trauma survivors, metabolic alterations in plasma were associated with reduced monocyte bioenergetics. These exploratory findings establish a groundwork for future clinical studies aimed at enhancing our understanding of the interplay between metabolic/bioenergetic alterations associated with trauma and secondary bacterial infections.</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":"633-643"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002419","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Background : Trauma and blood loss are frequently associated with organ failure, immune dysfunction, and a high risk of secondary bacterial lung infections. We aim to test if plasma metabolomic flux and monocyte bioenergetics are altered in association with trauma and related secondary infections. Methods : Plasma samples were collected from trauma patients at three time points: days 0, 3, and 7 postadmission. Metabolites (140) were measured in plasma from trauma survivors ( n = 24) and healthy control individuals (HC, n = 10). Further analysis within the trauma cohort included subsets of trauma/infection-negative (TIneg, n = 12) and trauma/infection-positive patients (TIpos, n = 12). The bioenergetic profile in monocytes was determined using mitochondrial and glycolytic stress tests. Results : In the trauma cohort, significant alterations were observed in 29 metabolites directly affecting 11 major metabolic pathways, while 34 metabolite alterations affected 8 pathways in 9, versus TIneg patients. The most altered metabolic pathways included protein synthesis, the urea cycle/arginine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, and carnitine compound family. In monocytes from trauma patients, reduced mitochondrial indices and loss of glycolytic plasticity were consistent with an altered profile of plasma metabolites in the tricarboxylic acid cycle and glycolysis. Conclusions : Our study highlights that the metabolic profile is significantly and persistently affected by trauma and related infections. Among trauma survivors, metabolic alterations in plasma were associated with reduced monocyte bioenergetics. These exploratory findings establish a groundwork for future clinical studies aimed at enhancing our understanding of the interplay between metabolic/bioenergetic alterations associated with trauma and secondary bacterial infections.
期刊介绍:
SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.