Wearable sensors based on artificial intelligence models for human activity recognition.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-06-27 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1424190
Mohammed Alarfaj, Azzam Al Madini, Ahmed Alsafran, Mohammed Farag, Slim Chtourou, Ahmed Afifi, Ayaz Ahmad, Osama Al Rubayyi, Ali Al Harbi, Mustafa Al Thunaian
{"title":"Wearable sensors based on artificial intelligence models for human activity recognition.","authors":"Mohammed Alarfaj, Azzam Al Madini, Ahmed Alsafran, Mohammed Farag, Slim Chtourou, Ahmed Afifi, Ayaz Ahmad, Osama Al Rubayyi, Ali Al Harbi, Mustafa Al Thunaian","doi":"10.3389/frai.2024.1424190","DOIUrl":null,"url":null,"abstract":"<p><p>Human motion detection technology holds significant potential in medicine, health care, and physical exercise. This study introduces a novel approach to human activity recognition (HAR) using convolutional neural networks (CNNs) designed for individual sensor types to enhance the accuracy and address the challenge of diverse data shapes from accelerometers, gyroscopes, and barometers. Specific CNN models are constructed for each sensor type, enabling them to capture the characteristics of their respective sensors. These adapted CNNs are designed to effectively process varying data shapes and sensor-specific characteristics to accurately classify a wide range of human activities. The late-fusion technique is employed to combine predictions from various models to obtain comprehensive estimates of human activity. The proposed CNN-based approach is compared to a standard support vector machine (SVM) classifier using the one-<i>vs</i>-rest methodology. The late-fusion CNN model showed significantly improved performance, with validation and final test accuracies of 99.35 and 94.83% compared to the conventional SVM classifier at 87.07 and 83.10%, respectively. These findings provide strong evidence that combining multiple sensors and a barometer and utilizing an additional filter algorithm greatly improves the accuracy of identifying different human movement patterns.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1424190"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1424190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Human motion detection technology holds significant potential in medicine, health care, and physical exercise. This study introduces a novel approach to human activity recognition (HAR) using convolutional neural networks (CNNs) designed for individual sensor types to enhance the accuracy and address the challenge of diverse data shapes from accelerometers, gyroscopes, and barometers. Specific CNN models are constructed for each sensor type, enabling them to capture the characteristics of their respective sensors. These adapted CNNs are designed to effectively process varying data shapes and sensor-specific characteristics to accurately classify a wide range of human activities. The late-fusion technique is employed to combine predictions from various models to obtain comprehensive estimates of human activity. The proposed CNN-based approach is compared to a standard support vector machine (SVM) classifier using the one-vs-rest methodology. The late-fusion CNN model showed significantly improved performance, with validation and final test accuracies of 99.35 and 94.83% compared to the conventional SVM classifier at 87.07 and 83.10%, respectively. These findings provide strong evidence that combining multiple sensors and a barometer and utilizing an additional filter algorithm greatly improves the accuracy of identifying different human movement patterns.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工智能模型的可穿戴传感器,用于识别人类活动。
人体运动检测技术在医疗、保健和体育锻炼方面具有巨大潜力。本研究介绍了一种新颖的人类活动识别(HAR)方法,该方法使用针对不同传感器类型设计的卷积神经网络(CNN),以提高准确性并应对来自加速度计、陀螺仪和气压计的不同数据形状所带来的挑战。为每种传感器类型构建了特定的 CNN 模型,使其能够捕捉各自传感器的特征。这些经过调整的 CNN 可有效处理不同的数据形状和传感器的特定特征,从而对各种人类活动进行准确分类。后期融合技术用于结合各种模型的预测结果,从而获得人类活动的综合估计值。使用one-vs-rest方法,将所提出的基于CNN的方法与标准支持向量机(SVM)分类器进行了比较。与传统 SVM 分类器的 87.07% 和 83.10% 相比,后期融合 CNN 模型的验证和最终测试准确率分别为 99.35% 和 94.83%,性能有了显著提高。这些研究结果有力地证明,将多个传感器和气压计结合起来并利用额外的过滤算法,可以大大提高识别不同人体运动模式的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Advancing smart city factories: enhancing industrial mechanical operations via deep learning techniques. Inpainting of damaged temple murals using edge- and line-guided diffusion patch GAN. Catalyzing IVF outcome prediction: exploring advanced machine learning paradigms for enhanced success rate prognostication. Predicting patient reported outcome measures: a scoping review for the artificial intelligence-guided patient preference predictor. A generative AI-driven interactive listening assessment task.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1