Small RNA sequencing analysis reveals regulation of microRNA expression in Madin-Darby canine kidney epithelial cells infected with Canid alphaherpesvirus 1.
{"title":"Small RNA sequencing analysis reveals regulation of microRNA expression in Madin-Darby canine kidney epithelial cells infected with Canid alphaherpesvirus 1.","authors":"Maha Ben Hamouda, Angela Pearson","doi":"10.1007/s11262-024-02091-6","DOIUrl":null,"url":null,"abstract":"<p><p>Canid alphaherpesvirus 1 (CHV-1) infection can cause spontaneous abortions in pregnant dams, and in young puppies, fatal systemic infections are common. MicroRNAs (miRNAs) affect viral infection by binding to messenger RNAs, and inhibiting expression of host and/or viral genes. We conducted deep sequencing of small RNAs in CHV-1-infected and mock-infected Madin-Darby Canine Kidney (MDCK) epithelial cells, and detected sequences corresponding to 282 cellular miRNAs. Of these, 18 were significantly upregulated at 12 h post-infection, most of which were encoded on the X chromosome. We next quantified the mature forms of several of the miRNAs using stem loop RT-qPCR. Our results revealed a discordance between the levels of small RNAs corresponding to canine miRNAs, and levels of the corresponding mature miRNAs, which suggests a block in miRNA biogenesis in infected cells. Nevertheless, we identified several mature miRNAs that exhibited a statistically significant increase upon infection. These included cfa-miR-8908b, a miRNA of unknown function, and cfa-miR-146a, homologs of which target innate immune pathways and are known to play a role in other viral infections. Interestingly, ontology analysis predicted that cfa-miR-8908b targets factors involved in the ubiquitin-like protein conjugation pathway and peroxisome biogenesis among other cellular functions. This is the first study to evaluate changes in miRNA levels upon CHV-1 infection. Based on our findings, we developed a model whereby CHV-1 infection results in changes in levels of a limited number of cellular miRNAs that target elements of the host immune response, which may provide clues regarding novel therapeutic targets.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"537-548"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-024-02091-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Canid alphaherpesvirus 1 (CHV-1) infection can cause spontaneous abortions in pregnant dams, and in young puppies, fatal systemic infections are common. MicroRNAs (miRNAs) affect viral infection by binding to messenger RNAs, and inhibiting expression of host and/or viral genes. We conducted deep sequencing of small RNAs in CHV-1-infected and mock-infected Madin-Darby Canine Kidney (MDCK) epithelial cells, and detected sequences corresponding to 282 cellular miRNAs. Of these, 18 were significantly upregulated at 12 h post-infection, most of which were encoded on the X chromosome. We next quantified the mature forms of several of the miRNAs using stem loop RT-qPCR. Our results revealed a discordance between the levels of small RNAs corresponding to canine miRNAs, and levels of the corresponding mature miRNAs, which suggests a block in miRNA biogenesis in infected cells. Nevertheless, we identified several mature miRNAs that exhibited a statistically significant increase upon infection. These included cfa-miR-8908b, a miRNA of unknown function, and cfa-miR-146a, homologs of which target innate immune pathways and are known to play a role in other viral infections. Interestingly, ontology analysis predicted that cfa-miR-8908b targets factors involved in the ubiquitin-like protein conjugation pathway and peroxisome biogenesis among other cellular functions. This is the first study to evaluate changes in miRNA levels upon CHV-1 infection. Based on our findings, we developed a model whereby CHV-1 infection results in changes in levels of a limited number of cellular miRNAs that target elements of the host immune response, which may provide clues regarding novel therapeutic targets.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.