Feasibility study on heterotrophic utilization of galactose by Chlorella sorokiniana and promotion of galactose utilization through mixed carbon sources culture
{"title":"Feasibility study on heterotrophic utilization of galactose by Chlorella sorokiniana and promotion of galactose utilization through mixed carbon sources culture","authors":"Shengjie Wu, Xiao Cheng, Qinyun Xu, Shikai Wang","doi":"10.1186/s13068-024-02547-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The development of alternative carbon sources is important for reducing the cost of heterotrophic microalgae cultivation. Among cheap feedstocks, galactose is one of the most abundant sugars and can be easily obtained from many natural biomasses. However, it is generally difficult to be utilized by microalgae. In addition, the mechanism of its low utilization efficiency in heterotrophic cultivation is still unknown.</p><h3>Results</h3><p>Among seven tested carbon sources, only glucose and acetate could be efficiently utilized by <i>C. sorokiniana</i> in heterotrophic cultivation while there were no apparent signs of utilization of other carbohydrates, including galactose, in regular heterotrophic cultivation. However, galactose could be utilized in cultures with high inoculation sizes. This confirmed that <i>C. sorokiniana</i> has a complete pathway for transporting and assimilating galactose under dark conditions, but the rate of galactose utilization is quite low. In addition, the galactose utilization was greatly enhanced in mixotrophic cultures, which indicated that galactose utilization could be enhanced by additional pathways that can enhance cell growth. Based on above results, a mixed carbon source culture strategy was proposed to improve the utilization rate of galactose, and a significant synergistic effect on cell growth was achieved in cultures using a mixture of galactose and acetate.</p><h3>Conclusions</h3><p>This study indicated that the galactose metabolism pathway may not be inherently deficient in Chlorophyta. However, its utilization rate was too low to be detected in regular heterotrophic cultivation. Mixed carbon source culture strategy was confirmed effective to improve the utilization rate of galactose. This study contributes to a deeper understanding of the utilization ability of difficultly utilized substrates in the heterotrophic cultivation of microalgae, which is of great significance for reducing the cost of heterotrophic cultivation of microalgae.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253373/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02547-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The development of alternative carbon sources is important for reducing the cost of heterotrophic microalgae cultivation. Among cheap feedstocks, galactose is one of the most abundant sugars and can be easily obtained from many natural biomasses. However, it is generally difficult to be utilized by microalgae. In addition, the mechanism of its low utilization efficiency in heterotrophic cultivation is still unknown.
Results
Among seven tested carbon sources, only glucose and acetate could be efficiently utilized by C. sorokiniana in heterotrophic cultivation while there were no apparent signs of utilization of other carbohydrates, including galactose, in regular heterotrophic cultivation. However, galactose could be utilized in cultures with high inoculation sizes. This confirmed that C. sorokiniana has a complete pathway for transporting and assimilating galactose under dark conditions, but the rate of galactose utilization is quite low. In addition, the galactose utilization was greatly enhanced in mixotrophic cultures, which indicated that galactose utilization could be enhanced by additional pathways that can enhance cell growth. Based on above results, a mixed carbon source culture strategy was proposed to improve the utilization rate of galactose, and a significant synergistic effect on cell growth was achieved in cultures using a mixture of galactose and acetate.
Conclusions
This study indicated that the galactose metabolism pathway may not be inherently deficient in Chlorophyta. However, its utilization rate was too low to be detected in regular heterotrophic cultivation. Mixed carbon source culture strategy was confirmed effective to improve the utilization rate of galactose. This study contributes to a deeper understanding of the utilization ability of difficultly utilized substrates in the heterotrophic cultivation of microalgae, which is of great significance for reducing the cost of heterotrophic cultivation of microalgae.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis