BI in simulation analysis with gaming for decision making and development of knowledge management

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Entertainment Computing Pub Date : 2024-07-06 DOI:10.1016/j.entcom.2024.100811
Jie Liu , Shan Ding
{"title":"BI in simulation analysis with gaming for decision making and development of knowledge management","authors":"Jie Liu ,&nbsp;Shan Ding","doi":"10.1016/j.entcom.2024.100811","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing technology advancements have led to a number of problems with modern corporate decision-making, which is a challenging occurrence in the absence of business intelligence and machine learning (ML). Because effective decision-making is impossible without ML, integration of ML with business intelligence (BI) is essential to both corporate decision-making and business intelligence as a whole. Only once they have learned anything again may machines assist in your educational process. This study suggests a fresh approach to knowledge building in company management decision-making through the use of gaming and machine learning models. Using a game model that involves decision-making, knowledge analysis based on business management is conducted. Subsequently, quantum reinforcement reward neural networks build knowledge. The accuracy, precision, recall, F_1 score, MSE, NSE of business management modelling with knowledge growth are all assessed by simulation. The student’s gender had no bearing on the income they were offered throughout the job placement process or their MBA specialisations in Marketing and Finance (Mkt &amp; Fin) or Marketing and Human Resource (Mkt &amp; HR), according to a statistical <em>t</em>-test with a significance threshold of 0.05 (p &gt; 0.05).</p></div>","PeriodicalId":55997,"journal":{"name":"Entertainment Computing","volume":"52 ","pages":"Article 100811"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entertainment Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875952124001794","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing technology advancements have led to a number of problems with modern corporate decision-making, which is a challenging occurrence in the absence of business intelligence and machine learning (ML). Because effective decision-making is impossible without ML, integration of ML with business intelligence (BI) is essential to both corporate decision-making and business intelligence as a whole. Only once they have learned anything again may machines assist in your educational process. This study suggests a fresh approach to knowledge building in company management decision-making through the use of gaming and machine learning models. Using a game model that involves decision-making, knowledge analysis based on business management is conducted. Subsequently, quantum reinforcement reward neural networks build knowledge. The accuracy, precision, recall, F_1 score, MSE, NSE of business management modelling with knowledge growth are all assessed by simulation. The student’s gender had no bearing on the income they were offered throughout the job placement process or their MBA specialisations in Marketing and Finance (Mkt & Fin) or Marketing and Human Resource (Mkt & HR), according to a statistical t-test with a significance threshold of 0.05 (p > 0.05).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用游戏进行模拟分析的 BI,促进决策和知识管理的发展
技术的不断进步导致现代企业决策中出现了许多问题,在缺乏商业智能和机器学习(ML)的情况下,企业决策面临着巨大挑战。因为没有 ML 就不可能实现有效决策,所以 ML 与商业智能 (BI) 的整合对于企业决策和整个商业智能都至关重要。只有当他们再次学习到任何知识后,机器才有可能在您的教育过程中提供帮助。本研究提出了一种全新的方法,即通过使用游戏和机器学习模型来构建公司管理决策中的知识。利用涉及决策的游戏模型,进行基于企业管理的知识分析。随后,量子强化奖励神经网络构建知识。通过仿真评估了带有知识增长的企业管理建模的准确度、精确度、召回率、F_1 分数、MSE、NSE。根据显著性临界值为 0.05 的统计 t 检验(p > 0.05),学生的性别对他们在整个就业安置过程中获得的收入或他们的 MBA 专业市场营销与金融(Mkt & Fin)或市场营销与人力资源(Mkt & HR)没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Entertainment Computing
Entertainment Computing Computer Science-Human-Computer Interaction
CiteScore
5.90
自引率
7.10%
发文量
66
期刊介绍: Entertainment Computing publishes original, peer-reviewed research articles and serves as a forum for stimulating and disseminating innovative research ideas, emerging technologies, empirical investigations, state-of-the-art methods and tools in all aspects of digital entertainment, new media, entertainment computing, gaming, robotics, toys and applications among researchers, engineers, social scientists, artists and practitioners. Theoretical, technical, empirical, survey articles and case studies are all appropriate to the journal.
期刊最新文献
A comparative analysis of game experience in treadmill running applications Revenue effects of Denuvo digital rights management on PC video games The impact of performance degree on players: Exploring player enjoyment and engagement in the dynamic of game process Eight types of video game experience Exploring music-based attachment to video games through affect expressions in written memories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1