{"title":"ZNF300 promotes proliferation and migration of hepatocellular carcinoma by upregulating c-MYC gene expression","authors":"Wei Xiang, Junwei Ni, Liyang Dong, Guoqing Zhu","doi":"10.1016/j.clinre.2024.102415","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. Currently, the treatments of HCC are limited to surgical resection and liver transplantation, and there is no effective systemic therapy.</p></div><div><h3>Objectives</h3><p>To investigate the regulatory mechanism of zinc finger protein 300 (ZNF300) in hepatocellular carcinoma (HCC).</p></div><div><h3>Methods</h3><p>The expressions of ZNF300 in HCC tissue samples and HCC cell lines (Hep3B, Huh7, SNU-387) were detected. ZNF300 overexpression vector (ZNF300) or shRNAZNF300 (shZNF300) was transfected into HCC cells to increase or inhibit ZNF300 expression. 5‐Ethynyl‐2′‐deoxyuridine assay (EdU), cell counting kit‐8 assay (CCK‐8) and transwell invasion assay were conducted to evaluate the proliferation, viability, migration, and invasion of HCC cells respectively. The expressions of tumor migration and invasion related proteins (matrix metallopeptidase 2 (MMP-2) and MMP-9), c-MYC, and MAPK/ERK signaling pathway related molecules (p-ERK1/2, ERK1/2, p-P38, P38) were determined by western blotting. Hep3B cells transfected with shZNF300 were subcutaneously injected into nude mice to perform tumor xenograft experiment. Tumor volume and weight were measured.</p></div><div><h3>Results</h3><p>ZNF300 was upregulated in HCC tissues and cells. The expressions of MMP-2 and MMP-9 were increased in HCC cells after transfecting with ZNF300 but reduced in HCC cells transfected with shZNF300. Downregulation of ZNF300 inhibited HCC cell proliferation, migration, and invasion, while overexpression of ZNF300 showed the opposite effects. Moreover, the expressions of c-MYC and MAPK/ERK signaling pathway related molecules were increased after overexpression of ZNF300 but reduced after downregulating ZNF300. In tumor xenograft experiment, downregulation of ZNF300 reduced tumor volume and weight.</p></div><div><h3>Conclusion</h3><p>The present study proved that downregulation of ZNF300 inhibited HCC growth by reducing c-MYC expression and MAPK/ERK signaling pathway.</p></div>","PeriodicalId":10424,"journal":{"name":"Clinics and research in hepatology and gastroenterology","volume":"48 7","pages":"Article 102415"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinics and research in hepatology and gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210740124001360","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. Currently, the treatments of HCC are limited to surgical resection and liver transplantation, and there is no effective systemic therapy.
Objectives
To investigate the regulatory mechanism of zinc finger protein 300 (ZNF300) in hepatocellular carcinoma (HCC).
Methods
The expressions of ZNF300 in HCC tissue samples and HCC cell lines (Hep3B, Huh7, SNU-387) were detected. ZNF300 overexpression vector (ZNF300) or shRNAZNF300 (shZNF300) was transfected into HCC cells to increase or inhibit ZNF300 expression. 5‐Ethynyl‐2′‐deoxyuridine assay (EdU), cell counting kit‐8 assay (CCK‐8) and transwell invasion assay were conducted to evaluate the proliferation, viability, migration, and invasion of HCC cells respectively. The expressions of tumor migration and invasion related proteins (matrix metallopeptidase 2 (MMP-2) and MMP-9), c-MYC, and MAPK/ERK signaling pathway related molecules (p-ERK1/2, ERK1/2, p-P38, P38) were determined by western blotting. Hep3B cells transfected with shZNF300 were subcutaneously injected into nude mice to perform tumor xenograft experiment. Tumor volume and weight were measured.
Results
ZNF300 was upregulated in HCC tissues and cells. The expressions of MMP-2 and MMP-9 were increased in HCC cells after transfecting with ZNF300 but reduced in HCC cells transfected with shZNF300. Downregulation of ZNF300 inhibited HCC cell proliferation, migration, and invasion, while overexpression of ZNF300 showed the opposite effects. Moreover, the expressions of c-MYC and MAPK/ERK signaling pathway related molecules were increased after overexpression of ZNF300 but reduced after downregulating ZNF300. In tumor xenograft experiment, downregulation of ZNF300 reduced tumor volume and weight.
Conclusion
The present study proved that downregulation of ZNF300 inhibited HCC growth by reducing c-MYC expression and MAPK/ERK signaling pathway.
期刊介绍:
Clinics and Research in Hepatology and Gastroenterology publishes high-quality original research papers in the field of hepatology and gastroenterology. The editors put the accent on rapid communication of new research and clinical developments and so called "hot topic" issues. Following a clear Editorial line, besides original articles and case reports, each issue features editorials, commentaries and reviews. The journal encourages research and discussion between all those involved in the specialty on an international level. All articles are peer reviewed by international experts, the articles in press are online and indexed in the international databases (Current Contents, Pubmed, Scopus, Science Direct).
Clinics and Research in Hepatology and Gastroenterology is a subscription journal (with optional open access), which allows you to publish your research without any cost to you (unless you proactively chose the open access option). Your article will be available to all researchers around the globe whose institution has a subscription to the journal.