{"title":"Non-commutative perturbation theory for spin dynamics explains the factorization properties of RIDME background","authors":"","doi":"10.1016/j.jmr.2024.107729","DOIUrl":null,"url":null,"abstract":"<div><p>The intermolecular hyperfine relaxation-induced dipolar modulation enhancement (ih-RIDME) experiment has a promising potential to quantitatively characterize the nuclear environment in the 0.8-3 nm range around an electron spin. Such information about the spatial arrangement of nuclei is of great interest for structural biology as well as for dynamic nuclear polarization (DNP) methods. In order to develop a reliable and sensitive spectroscopic tool, a solid data model needs to be established. Here, we attempt to provide a theoretical explanation for the experimentally observed properties of the ih-RIDME signal. Our main approach uses a perturbation expansion of the Baker–Campbell–Hausdorff formula during the transverse evolution of the electron spin, treating the nuclear dipolar Hamiltonian as a perturbation. We show that a product structure of the ih-RIDME signal follows directly from the statistical independence of the perturbation terms and the multinuclear hyperfine coupling, and that this signal composition is expected when the mixing time exceeds the 95% decay of the Hahn echo.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724001137/pdfft?md5=69c31975fef8deaf55a79d77abbadb2f&pid=1-s2.0-S1090780724001137-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724001137","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The intermolecular hyperfine relaxation-induced dipolar modulation enhancement (ih-RIDME) experiment has a promising potential to quantitatively characterize the nuclear environment in the 0.8-3 nm range around an electron spin. Such information about the spatial arrangement of nuclei is of great interest for structural biology as well as for dynamic nuclear polarization (DNP) methods. In order to develop a reliable and sensitive spectroscopic tool, a solid data model needs to be established. Here, we attempt to provide a theoretical explanation for the experimentally observed properties of the ih-RIDME signal. Our main approach uses a perturbation expansion of the Baker–Campbell–Hausdorff formula during the transverse evolution of the electron spin, treating the nuclear dipolar Hamiltonian as a perturbation. We show that a product structure of the ih-RIDME signal follows directly from the statistical independence of the perturbation terms and the multinuclear hyperfine coupling, and that this signal composition is expected when the mixing time exceeds the 95% decay of the Hahn echo.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.