Implementation of unknown parameter estimation procedure for hybrid and discrete non-linear systems

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Radar Sonar and Navigation Pub Date : 2024-06-19 DOI:10.1049/rsn2.12604
Mahdi Razm-Pa
{"title":"Implementation of unknown parameter estimation procedure for hybrid and discrete non-linear systems","authors":"Mahdi Razm-Pa","doi":"10.1049/rsn2.12604","DOIUrl":null,"url":null,"abstract":"<p>The application of the hybrid extended Kalman filter (HEKF), hybrid unscented Kalman filter (HUKF), hybrid particle filter (HPF), and hybrid extended Kalman particle filter (HEKPF) is discussed for hybrid non-linear filter problems, when prediction equations are continuous-time and the update equations are discrete-time, and also the discrete extended Kalman filter (DEKF), discrete unscented Kalman filter (DUKF), discrete particle filter (DPF), and discrete extended Kalman particle filter (DEKPF) for discrete-time non-linear filter problems, when prediction equations and update equations are discrete-time. In order to assess the performance of the filters, the authors consider the non-linear dynamics for a re-entry vehicle. The filters are used in two hybrid and discrete states to estimate the position, velocity, and drag parameter associated with the re-entry vehicle. Theoretical topics concerning estimating the drag parameter of a vehicle in re-entry phase have been dealt with. Drag parameter estimation is carried out using a combination of hybrid filters and discrete filters as an effective estimator and fixed value, forgetting factor, and Robbins-Monro stochastic approximation methods as the noise covariance matrix adjuster of the parameter.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 7","pages":"1036-1054"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12604","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12604","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The application of the hybrid extended Kalman filter (HEKF), hybrid unscented Kalman filter (HUKF), hybrid particle filter (HPF), and hybrid extended Kalman particle filter (HEKPF) is discussed for hybrid non-linear filter problems, when prediction equations are continuous-time and the update equations are discrete-time, and also the discrete extended Kalman filter (DEKF), discrete unscented Kalman filter (DUKF), discrete particle filter (DPF), and discrete extended Kalman particle filter (DEKPF) for discrete-time non-linear filter problems, when prediction equations and update equations are discrete-time. In order to assess the performance of the filters, the authors consider the non-linear dynamics for a re-entry vehicle. The filters are used in two hybrid and discrete states to estimate the position, velocity, and drag parameter associated with the re-entry vehicle. Theoretical topics concerning estimating the drag parameter of a vehicle in re-entry phase have been dealt with. Drag parameter estimation is carried out using a combination of hybrid filters and discrete filters as an effective estimator and fixed value, forgetting factor, and Robbins-Monro stochastic approximation methods as the noise covariance matrix adjuster of the parameter.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合和离散非线性系统未知参数估计程序的实现
讨论了混合扩展卡尔曼滤波器(HEKF)、混合非香精卡尔曼滤波器(HUKF)、混合粒子滤波器(HPF)和混合扩展卡尔曼粒子滤波器(HEKPF)在混合非线性滤波问题中的应用,当预测方程为连续时间而更新方程为离散时间时、以及离散扩展卡尔曼滤波器(DEKF)、离散无符号卡尔曼滤波器(DUKF)、离散粒子滤波器(DPF)和离散扩展卡尔曼粒子滤波器(DEKPF),用于预测方程和更新方程均为离散时间的离散时间非线性滤波问题。为了评估滤波器的性能,作者考虑了重返大气层飞行器的非线性动力学。在两种混合和离散状态下使用滤波器来估计与再入飞行器相关的位置、速度和阻力参数。作者讨论了有关再入阶段飞行器阻力参数估计的理论问题。阻力参数估计采用混合滤波器和离散滤波器的组合作为有效估算器,并采用固定值、遗忘因子和罗宾斯-蒙罗随机近似方法作为参数的噪声协方差矩阵调整器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
期刊最新文献
Matched cross-spectrum phase processing for source depth estimation in deep water Development of a reliable adaptive estimation approach for a low-cost attitude and heading reference system Availability evaluation and optimisation of advanced receiver autonomous integrity monitoring fault detection and exclusion considering temporal correlations Multi-agent multi-dimensional joint optimisation of jamming decision-making against multi-functional radar Active reconfigurable intelligent surface-aided multiple-input-multiple-output radar detection in the presence of clutter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1