Evaluation of romosozumab's effects on bone marrow adiposity in postmenopausal osteoporotic women: results from the FRAME bone biopsy sub-study.

IF 5.1 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Bone and Mineral Research Pub Date : 2024-09-02 DOI:10.1093/jbmr/zjae118
Pascale Chavassieux, Jean Paul Roux, Cesar Libanati, Yifei Shi, Roland Chapurlat
{"title":"Evaluation of romosozumab's effects on bone marrow adiposity in postmenopausal osteoporotic women: results from the FRAME bone biopsy sub-study.","authors":"Pascale Chavassieux, Jean Paul Roux, Cesar Libanati, Yifei Shi, Roland Chapurlat","doi":"10.1093/jbmr/zjae118","DOIUrl":null,"url":null,"abstract":"<p><p>Romosozumab, a humanized monoclonal antibody that binds and inhibits sclerostin, produces a marked increase in bone formation with a concomitant decreased bone resorption. This transient rise in bone formation in the first 2 months of treatment is mainly due to an increased modeling-based bone formation. This requires the recruitment and differentiation of osteoblasts, one possibility being a preferential switch in commitment of precursors to osteoblasts over adipocytes. The purpose of this study was to analyze the marrow adiposity in transiliac bone biopsies at months 2 or 12 from the FRAME biopsy sub-study in patients receiving romosozumab or placebo. The total adipocyte area, number, and density were measured on the total cancellous bone area. The size and shape at the individual adipocyte level were assessed including the mean adipocyte area, perimeter, min and max diameters, and aspect ratio. No significant difference in total adipocyte area, number, or density between placebo and romosozumab groups was observed at months 2 and 12, and no difference was observed between 2 and 12 months. After 2 or 12 months, romosozumab did not modify the size or shape of the adipocytes. No relationship between the adipocyte parameters and the dynamic parameters of bone formation could be evidenced. In conclusion, based on the analysis of a small number of biopsies, no effect of romosozumab on bone marrow adiposity of iliac crest was identified after 2 and 12 months suggesting that the modeling-based formation observed at month 2 was not due to a preferential commitment of the precursor to osteoblast over adipocyte cell lines but may result from a reactivation of bone lining cells and from a progenitor pool independent of the marrow adipocyte population.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1278-1283"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae118","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Romosozumab, a humanized monoclonal antibody that binds and inhibits sclerostin, produces a marked increase in bone formation with a concomitant decreased bone resorption. This transient rise in bone formation in the first 2 months of treatment is mainly due to an increased modeling-based bone formation. This requires the recruitment and differentiation of osteoblasts, one possibility being a preferential switch in commitment of precursors to osteoblasts over adipocytes. The purpose of this study was to analyze the marrow adiposity in transiliac bone biopsies at months 2 or 12 from the FRAME biopsy sub-study in patients receiving romosozumab or placebo. The total adipocyte area, number, and density were measured on the total cancellous bone area. The size and shape at the individual adipocyte level were assessed including the mean adipocyte area, perimeter, min and max diameters, and aspect ratio. No significant difference in total adipocyte area, number, or density between placebo and romosozumab groups was observed at months 2 and 12, and no difference was observed between 2 and 12 months. After 2 or 12 months, romosozumab did not modify the size or shape of the adipocytes. No relationship between the adipocyte parameters and the dynamic parameters of bone formation could be evidenced. In conclusion, based on the analysis of a small number of biopsies, no effect of romosozumab on bone marrow adiposity of iliac crest was identified after 2 and 12 months suggesting that the modeling-based formation observed at month 2 was not due to a preferential commitment of the precursor to osteoblast over adipocyte cell lines but may result from a reactivation of bone lining cells and from a progenitor pool independent of the marrow adipocyte population.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估 Romosozumab 对绝经后骨质疏松妇女骨髓脂肪含量的影响:FRAME骨活检子研究的结果。
Romosozumab是一种人源化单克隆抗体,能结合并抑制硬骨生成素,从而显著增加骨形成,同时减少骨吸收。在治疗的头两个月,骨形成的短暂增加主要是由于基于模型的骨形成增加。这需要成骨细胞的募集和分化,一种可能是成骨细胞前体的承诺优先于脂肪细胞。本研究的目的是分析接受罗莫单抗或安慰剂治疗的患者在FRAME活检子研究中第2个月或第12个月经髂骨活检的骨髓脂肪含量。在松质骨总面积上测量了脂肪细胞的总面积、数量和密度。对单个脂肪细胞的大小和形状进行了评估,包括脂肪细胞的平均面积、周长、最小和最大直径以及长宽比。安慰剂组和罗莫司单抗组的脂肪细胞总面积、数量或密度在第2个月和第12个月时没有观察到明显差异,在第2个月和第12个月时也没有观察到差异。2 个月或 12 个月后,romosozumab 没有改变脂肪细胞的大小或形状。脂肪细胞参数与骨形成的动态参数之间没有关系。总之,根据对少量活组织切片的分析,2 个月和 12 个月后,罗莫索单抗对髂嵴骨髓脂肪没有影响,这表明第 2 个月观察到的基于模型的骨形成并不是由于成骨细胞前体优先于脂肪细胞系,而是可能来自骨衬里细胞的重新激活和独立于骨髓脂肪细胞群的祖细胞池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bone and Mineral Research
Journal of Bone and Mineral Research 医学-内分泌学与代谢
CiteScore
11.30
自引率
6.50%
发文量
257
审稿时长
2 months
期刊介绍: The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.
期刊最新文献
Expression of Concern: CYP4A22 loss-of-function causes a new type of vitamin D-dependent rickets (VDDR1C). A new Col1a1 conditional knock-in mouse model to study osteogenesis imperfecta. Bmpr1aa modulates the severity of the skeletal phenotype in an fkbp10-deficient Bruck syndrome zebrafish model. The role of vitamin D metabolism in regulating bone turnover in adolescents with perinatally-acquired HIV in southern Africa: a cross-sectional study in Zimbabwe and Zambia. Thrombopoietic agents enhance bone healing in mice, rats, and pigs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1