Research and development of microenvironment's influence on stem cells from the apical papilla - construction of novel research microdevices: tooth-on-a-chip.

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Biomedical Microdevices Pub Date : 2024-07-18 DOI:10.1007/s10544-024-00715-0
Hexuan Zhang, Lingjun Li, Xiaoqiang Sun, Benxiang Hou, Chunxiong Luo
{"title":"Research and development of microenvironment's influence on stem cells from the apical papilla - construction of novel research microdevices: tooth-on-a-chip.","authors":"Hexuan Zhang, Lingjun Li, Xiaoqiang Sun, Benxiang Hou, Chunxiong Luo","doi":"10.1007/s10544-024-00715-0","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cells are crucial in tissue engineering, and their microenvironment greatly influences their behavior. Among the various dental stem cell types, stem cells from the apical papilla (SCAPs) have shown great potential for regenerating the pulp-dentin complex. Microenvironmental cues that affect SCAPs include physical and biochemical factors. To research optimal pulp-dentin complex regeneration, researchers have developed several models of controlled biomimetic microenvironments, ranging from in vivo animal models to in vitro models, including two-dimensional cultures and three-dimensional devices. Among these models, the most powerful tool is a microfluidic microdevice, a tooth-on-a-chip with high spatial resolution of microstructures and precise microenvironment control. In this review, we start with the SCAP microenvironment in the regeneration of pulp-dentin complexes and discuss research models and studies related to the biological process.</p>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10544-024-00715-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Stem cells are crucial in tissue engineering, and their microenvironment greatly influences their behavior. Among the various dental stem cell types, stem cells from the apical papilla (SCAPs) have shown great potential for regenerating the pulp-dentin complex. Microenvironmental cues that affect SCAPs include physical and biochemical factors. To research optimal pulp-dentin complex regeneration, researchers have developed several models of controlled biomimetic microenvironments, ranging from in vivo animal models to in vitro models, including two-dimensional cultures and three-dimensional devices. Among these models, the most powerful tool is a microfluidic microdevice, a tooth-on-a-chip with high spatial resolution of microstructures and precise microenvironment control. In this review, we start with the SCAP microenvironment in the regeneration of pulp-dentin complexes and discuss research models and studies related to the biological process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究和开发微环境对根尖乳头干细胞的影响--构建新型研究微型装置:芯片上的牙齿。
干细胞在组织工程中至关重要,其微环境对其行为有很大影响。在各种牙科干细胞类型中,来自牙根尖乳头的干细胞(SCAPs)在再生牙髓-牙本质复合体方面显示出巨大的潜力。影响SCAPs的微环境因素包括物理和生化因素。为了研究牙髓-牙本质复合体的最佳再生效果,研究人员开发了多种可控仿生微环境模型,从体内动物模型到体外模型,包括二维培养和三维装置。在这些模型中,最强大的工具是微流体微装置,它是一种具有高空间分辨率的微结构和精确微环境控制的芯片上的牙齿。在本综述中,我们将从牙髓-牙本质复合体再生过程中的 SCAP 微环境入手,讨论与该生物过程相关的研究模型和研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
期刊最新文献
Study on Intestinal Pressure after Implantation of Biaxial Actuated Artificial Anal Sphincter in Animal. Ultrasound-assisted water oxidation: unveiling the role of piezoelectric metal-oxide sonocatalysts for cancer treatment. Latest progress of self-healing hydrogels in cardiac tissue engineering. Multiplex antibiotic susceptibility testing of urinary tract infections using an electrochemical lab-on-a-chip. A tacrolimus-eluting nerve guidance conduit enhances regeneration in a critical-sized peripheral nerve injury rat model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1