Gregory R Madden, Rachel H Boone, Emmanuel Lee, Costi D Sifri, William A Petri
{"title":"Predicting Clostridioides difficile infection outcomes with explainable machine learning.","authors":"Gregory R Madden, Rachel H Boone, Emmanuel Lee, Costi D Sifri, William A Petri","doi":"10.1016/j.ebiom.2024.105244","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Clostridioides difficile infection results in life-threatening short-term outcomes and the potential for subsequent recurrent infection. Predicting these outcomes at diagnosis, when important clinical decisions need to be made, has proven to be a difficult task.</p><p><strong>Methods: </strong>52 clinical features from existing models or the literature were collected retrospectively within ±48 h of diagnosis among 1660 inpatient infections. A modified desirability of outcome ranking (DOOR) was designed to encompass clinically-important severe events attributable to the acute infection (intensive care transfer due to sepsis, shock, colectomy/ileostomy, mortality) and/or 60-day recurrence. A deep neural network was constructed and interpreted using SHapley Additive exPlanations (SHAP). High-importance features were used to train a reduced, shallow network and performance was compared to existing conventional models (7 severity, 7 recurrence; after summing DOOR probabilities to align with conventional binary outputs) using area under the ROC curve (AUROC) and DeLong tests.</p><p><strong>Findings: </strong>The full (52-feature) model achieved an out-of-sample AUROC 0.823 for severity and 0.678 for recurrence. SHAP identified 13 unique, highly-important features (age, hypotension, initial treatment, onset, PCR cycle threshold, number of prior episodes, antibiotic exposure, fever, hypotension, pressors, leukocytosis, creatinine, lactate) that were used to train a reduced model, which performed similarly to the full model (severity AUROC difference P = 0.130; recurrence P = 0.426) and significantly better than the top severity model (reduced model predicting severity 0.837, ATLAS 0.749; P = 0.001). The reduced model also outperformed the top recurrence model, but this was not statistically-significant (reduced model recurrence AUROC 0.653, IDSA Recurrence Risk Criteria 0.595; P = 0.196). The final, reduced model was deployed as a web application with real-time SHAP explanations.</p><p><strong>Interpretation: </strong>Our final model outperformed existing severity and recurrence models; however, it requires external validation. A DOOR output allows specific clinical questions to be asked with explainable predictions that can be feasibly implemented with limited computing resources.</p><p><strong>Funding: </strong>National Institutes of Health-Institute of Allergy and Infectious Diseases.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105244","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Clostridioides difficile infection results in life-threatening short-term outcomes and the potential for subsequent recurrent infection. Predicting these outcomes at diagnosis, when important clinical decisions need to be made, has proven to be a difficult task.
Methods: 52 clinical features from existing models or the literature were collected retrospectively within ±48 h of diagnosis among 1660 inpatient infections. A modified desirability of outcome ranking (DOOR) was designed to encompass clinically-important severe events attributable to the acute infection (intensive care transfer due to sepsis, shock, colectomy/ileostomy, mortality) and/or 60-day recurrence. A deep neural network was constructed and interpreted using SHapley Additive exPlanations (SHAP). High-importance features were used to train a reduced, shallow network and performance was compared to existing conventional models (7 severity, 7 recurrence; after summing DOOR probabilities to align with conventional binary outputs) using area under the ROC curve (AUROC) and DeLong tests.
Findings: The full (52-feature) model achieved an out-of-sample AUROC 0.823 for severity and 0.678 for recurrence. SHAP identified 13 unique, highly-important features (age, hypotension, initial treatment, onset, PCR cycle threshold, number of prior episodes, antibiotic exposure, fever, hypotension, pressors, leukocytosis, creatinine, lactate) that were used to train a reduced model, which performed similarly to the full model (severity AUROC difference P = 0.130; recurrence P = 0.426) and significantly better than the top severity model (reduced model predicting severity 0.837, ATLAS 0.749; P = 0.001). The reduced model also outperformed the top recurrence model, but this was not statistically-significant (reduced model recurrence AUROC 0.653, IDSA Recurrence Risk Criteria 0.595; P = 0.196). The final, reduced model was deployed as a web application with real-time SHAP explanations.
Interpretation: Our final model outperformed existing severity and recurrence models; however, it requires external validation. A DOOR output allows specific clinical questions to be asked with explainable predictions that can be feasibly implemented with limited computing resources.
Funding: National Institutes of Health-Institute of Allergy and Infectious Diseases.
EBioMedicineBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍:
eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.