Effects of α-olefin sulfonate (AOS) on Tubifex tubifex: toxicodynamic-toxicokinetic inferences from the general unified threshold (GUTS) model, biomarker responses and molecular docking predictions.

IF 2.4 4区 环境科学与生态学 Q2 ECOLOGY Ecotoxicology Pub Date : 2024-10-01 Epub Date: 2024-07-18 DOI:10.1007/s10646-024-02790-8
Debanjali Chakraborty, Azubuike Victor Chukwuka, Sanjoy Podder, Pramita Sharma, Shovonlal Bhowmick, Tapan Kumar Mistri, Nimai Chandra Saha
{"title":"Effects of α-olefin sulfonate (AOS) on Tubifex tubifex: toxicodynamic-toxicokinetic inferences from the general unified threshold (GUTS) model, biomarker responses and molecular docking predictions.","authors":"Debanjali Chakraborty, Azubuike Victor Chukwuka, Sanjoy Podder, Pramita Sharma, Shovonlal Bhowmick, Tapan Kumar Mistri, Nimai Chandra Saha","doi":"10.1007/s10646-024-02790-8","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the potential ecological risks and harm to aquatic organisms posed by anionic surfactants such as α-olefin sulfonate (AOS), which are commonly found in industrial and consumer products, including detergents. This study assessed acute (96-h) and subchronic (14-day) responses using antioxidant activity, protein levels, and histopathological changes in Tubifex tubifex exposed to different AOS concentrations (10% of the LC<sub>50</sub>, 20% of the LC<sub>50</sub>, and a control). Molecular docking was used to investigate the potential interactions between the key stress biomarker enzymes (superoxide dismutase, catalase, and cytochrome c oxidase) of Tubifex tubifex. Acute AOS exposure showed a concentration-dependent decrease in survival, and the general unified threshold (GUTS) model revealed that survivorship is linked to individual response patterns rather than random (stochastic) fluctuations. The GUTS model also revealed dose-dependent toxicity patterns in Tubifex tubifex exposed to α-olefin sulfonate (AOS), with adaptive mechanisms at lower concentrations but significant increases in mortality beyond a certain threshold, emphasizing the role of the AOS concentration in shaping its toxicological impact. Exposure to AOS disrupted antioxidant activity, inducing oxidative stress, with GST and GPx showing positive associations with surfactant concentration and increased lipid peroxidation (elevated MDA levels); moreover, AOS exposure decreased protein concentration, signifying disturbances in vital cellular processes. Histopathological examinations revealed various tissue-level alterations, including cellular vacuolation, cytoplasmic swelling, inflammation, necrosis, and apoptosis. Molecular docking analysis demonstrated interactions between AOS and enzymes (-catalase, superoxide dismutase, and cytochrome c oxidase) in Tubifex tubifex, including hydrophobic and hydrogen bond interactions, with the potential to disrupt enzyme structures and activities, leading to cellular process disruptions, oxidative stress, and tissue damage. According to the species sensitivity distribution (SSD), the difference in toxicity between Tilapia melanopleura (higher sensitivity) and Daphnia magna (low sensitivity) to AOS suggests distinct toxicokinetic and toxicodynamic mechanisms attributable to more complex physiology in Tilapia and efficient detoxification in Daphnia due to its smaller size.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"905-920"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02790-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the potential ecological risks and harm to aquatic organisms posed by anionic surfactants such as α-olefin sulfonate (AOS), which are commonly found in industrial and consumer products, including detergents. This study assessed acute (96-h) and subchronic (14-day) responses using antioxidant activity, protein levels, and histopathological changes in Tubifex tubifex exposed to different AOS concentrations (10% of the LC50, 20% of the LC50, and a control). Molecular docking was used to investigate the potential interactions between the key stress biomarker enzymes (superoxide dismutase, catalase, and cytochrome c oxidase) of Tubifex tubifex. Acute AOS exposure showed a concentration-dependent decrease in survival, and the general unified threshold (GUTS) model revealed that survivorship is linked to individual response patterns rather than random (stochastic) fluctuations. The GUTS model also revealed dose-dependent toxicity patterns in Tubifex tubifex exposed to α-olefin sulfonate (AOS), with adaptive mechanisms at lower concentrations but significant increases in mortality beyond a certain threshold, emphasizing the role of the AOS concentration in shaping its toxicological impact. Exposure to AOS disrupted antioxidant activity, inducing oxidative stress, with GST and GPx showing positive associations with surfactant concentration and increased lipid peroxidation (elevated MDA levels); moreover, AOS exposure decreased protein concentration, signifying disturbances in vital cellular processes. Histopathological examinations revealed various tissue-level alterations, including cellular vacuolation, cytoplasmic swelling, inflammation, necrosis, and apoptosis. Molecular docking analysis demonstrated interactions between AOS and enzymes (-catalase, superoxide dismutase, and cytochrome c oxidase) in Tubifex tubifex, including hydrophobic and hydrogen bond interactions, with the potential to disrupt enzyme structures and activities, leading to cellular process disruptions, oxidative stress, and tissue damage. According to the species sensitivity distribution (SSD), the difference in toxicity between Tilapia melanopleura (higher sensitivity) and Daphnia magna (low sensitivity) to AOS suggests distinct toxicokinetic and toxicodynamic mechanisms attributable to more complex physiology in Tilapia and efficient detoxification in Daphnia due to its smaller size.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
α-烯烃磺酸盐(AOS)对Tubifex管圆线虫的影响:从一般统一阈值(GUTS)模型、生物标志物反应和分子对接预测中得出的毒效学-毒代动力学推论。
我们调查了α-烯烃磺酸盐(AOS)等阴离子表面活性剂对水生生物造成的潜在生态风险和危害,α-烯烃磺酸盐通常存在于包括洗涤剂在内的工业和消费品中。本研究使用抗氧化活性、蛋白质水平和组织病理学变化评估了暴露于不同浓度 AOS(半数致死浓度的 10%、半数致死浓度的 20% 和对照组)的 Tubifex tubifex 的急性(96 小时)和亚慢性(14 天)反应。采用分子对接法研究了Tubifex tubifex的关键应激生物标志物酶(超氧化物歧化酶、过氧化氢酶和细胞色素c氧化酶)之间的潜在相互作用。急性 AOS 暴露显示存活率下降与浓度有关,一般统一阈值(GUTS)模型显示存活率与个体反应模式有关,而不是随机波动。一般统一阈值(GUTS)模型还揭示了暴露于α-烯烃磺酸盐(AOS)的管鲍的剂量依赖性毒性模式,在较低浓度下具有适应机制,但超过一定阈值后死亡率显著增加,这强调了 AOS 浓度在形成其毒性影响方面的作用。暴露于 AOS 会破坏抗氧化活性,诱发氧化应激,GST 和 GPx 与表面活性剂浓度呈正相关,并增加脂质过氧化(MDA 水平升高);此外,暴露于 AOS 会降低蛋白质浓度,表明重要的细胞过程受到干扰。组织病理学检查显示了各种组织水平的改变,包括细胞空泡化、细胞质肿胀、炎症、坏死和凋亡。分子对接分析表明,AOS 与管虫体内的酶(-催化酶、超氧化物歧化酶和细胞色素 c 氧化酶)之间存在相互作用,包括疏水和氢键相互作用,有可能破坏酶的结构和活性,导致细胞过程紊乱、氧化应激和组织损伤。根据物种敏感性分布(SSD),黑色素罗非鱼(敏感性较高)和大型水蚤(敏感性较低)对 AOS 的毒性差异表明,罗非鱼的生理结构更为复杂,而大型水蚤由于体型较小,解毒效率较高,因此其毒动力学和毒效学机制各不相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecotoxicology
Ecotoxicology 环境科学-毒理学
CiteScore
5.30
自引率
3.70%
发文量
107
审稿时长
4.7 months
期刊介绍: Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.
期刊最新文献
Interactions between contaminants and the trophic ecology of two seabirds in a coastal lagoon of the Gulf of California. Mercury exposure in an endangered songbird: influence of marsh hydrology and evidence for early breeding impairment. Active biomonitoring of stream ecosystems: untargeted metabolomic and proteomic responses and free radical scavenging activities in mussels. Cascade reservoirs affect mercury concentrations in fish from Teles Pires river, Brazilian Amazon. Enzymatic activity and gene expression changes in the earthworms induced by co-exposure to beta-cypermethrin and triadimefon.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1