Wenkang Wang, Xiangmao Meng, Ju Xiang, Hayat Dino Bedru, Min Li
{"title":"Dopcc: Detecting overlapping protein complexes via multi-metrics and co-core attachment method.","authors":"Wenkang Wang, Xiangmao Meng, Ju Xiang, Hayat Dino Bedru, Min Li","doi":"10.1109/TCBB.2024.3429546","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of protein complex is an important issue in the field of system biology, which is crucial to understanding the cellular organization and inferring protein functions. Recently, many computational methods have been proposed to detect protein complexes from protein-protein interaction (PPI) networks. However, most of these methods only focus on local information of proteins in the PPI network, which are easily affected by the noise in the PPI network. Meanwhile, it's still challenging to detect protein complexes, especially for overlapping cases. To address these issues, we propose a new method, named Dopcc, to detect overlapping protein complexes by constructing a multi-metrics network according to different strategies. First, we adopt the Jaccard coefficient to measure the neighbor similarity between proteins and denoise the PPI network. Then, we propose a new strategy, integrating hierarchical compressing with network embedding, to capture the high-order structural similarity between proteins. Further, a new co-core attachment strategy is proposed to detect overlapping protein complexes from multi-metrics. The experimental results show that our proposed method, Dopcc, outperforms the other eight state-of-the-art methods in terms of F-measure, MMR, and Composite Score on two yeast datasets. The source code and datasets can be downloaded from https://github.com/CSUBioGroup/Dopcc.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3429546","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Identification of protein complex is an important issue in the field of system biology, which is crucial to understanding the cellular organization and inferring protein functions. Recently, many computational methods have been proposed to detect protein complexes from protein-protein interaction (PPI) networks. However, most of these methods only focus on local information of proteins in the PPI network, which are easily affected by the noise in the PPI network. Meanwhile, it's still challenging to detect protein complexes, especially for overlapping cases. To address these issues, we propose a new method, named Dopcc, to detect overlapping protein complexes by constructing a multi-metrics network according to different strategies. First, we adopt the Jaccard coefficient to measure the neighbor similarity between proteins and denoise the PPI network. Then, we propose a new strategy, integrating hierarchical compressing with network embedding, to capture the high-order structural similarity between proteins. Further, a new co-core attachment strategy is proposed to detect overlapping protein complexes from multi-metrics. The experimental results show that our proposed method, Dopcc, outperforms the other eight state-of-the-art methods in terms of F-measure, MMR, and Composite Score on two yeast datasets. The source code and datasets can be downloaded from https://github.com/CSUBioGroup/Dopcc.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system