{"title":"Pseudomonas aeruginosa epidemic high-risk clones and their association with multidrug-resistant","authors":"","doi":"10.1016/j.jgar.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>In Ecuador, data on molecular epidemiology, as well as circulating clones, are limited. Therefore, this study aims to know the population structure of <em>Pseudomonas aeruginosa</em> by identifying clones in clinical samples in Quito-Ecuador.</p></div><div><h3>Methods</h3><p>A significant set (45) clinical <em>P. aeruginosa</em> isolates were selected, including multidrug and non-multidrug resistant isolates, which were assigned to sequence types (STs) and compared with their antibiotic susceptibility profile. The genetic diversity was assessed by applying the multilocus sequence typing (MLST) scheme and the genetic relationships between different STs were corroborated by phylogenetic networks.</p></div><div><h3>Results</h3><p>The MLST analysis identified 24 different STs and the most prevalent STs were ST-3750 and ST-253. The majority of the multidrug-resistance (MDR) isolates were included in ST-3750 and ST-253, also 3 singleton STs were identified as MDR isolates. The 21 different STs were found in non-multidrug resistance (non-MDR) isolates, and only 3 STs were found in more the one isolate.</p></div><div><h3>Conclusions</h3><p>The population structure of clinical <em>P. aeruginosa</em> present in these isolates indicates a significant association between MDR isolates and the clonal types: all ST-3750 and ST-253 isolates were MDR. ST-3750 is a closely related strain to the clonal complex ST111 (CC111). ST-253 and ST111 are a group of successful high-risk clones widely distributed worldwide. The multiresistant isolates studied are grouped in the most prevalent STs found, and the susceptible isolates correspond mainly with singleton STs. Therefore, these high-risk clones and their association with MDR phenotypes are contributing to the spread of MDR in Quito, Ecuador.</p></div>","PeriodicalId":15936,"journal":{"name":"Journal of global antimicrobial resistance","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213716524001309/pdfft?md5=3b58ad5e6062fb8d5645e15ef495d76b&pid=1-s2.0-S2213716524001309-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of global antimicrobial resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213716524001309","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
In Ecuador, data on molecular epidemiology, as well as circulating clones, are limited. Therefore, this study aims to know the population structure of Pseudomonas aeruginosa by identifying clones in clinical samples in Quito-Ecuador.
Methods
A significant set (45) clinical P. aeruginosa isolates were selected, including multidrug and non-multidrug resistant isolates, which were assigned to sequence types (STs) and compared with their antibiotic susceptibility profile. The genetic diversity was assessed by applying the multilocus sequence typing (MLST) scheme and the genetic relationships between different STs were corroborated by phylogenetic networks.
Results
The MLST analysis identified 24 different STs and the most prevalent STs were ST-3750 and ST-253. The majority of the multidrug-resistance (MDR) isolates were included in ST-3750 and ST-253, also 3 singleton STs were identified as MDR isolates. The 21 different STs were found in non-multidrug resistance (non-MDR) isolates, and only 3 STs were found in more the one isolate.
Conclusions
The population structure of clinical P. aeruginosa present in these isolates indicates a significant association between MDR isolates and the clonal types: all ST-3750 and ST-253 isolates were MDR. ST-3750 is a closely related strain to the clonal complex ST111 (CC111). ST-253 and ST111 are a group of successful high-risk clones widely distributed worldwide. The multiresistant isolates studied are grouped in the most prevalent STs found, and the susceptible isolates correspond mainly with singleton STs. Therefore, these high-risk clones and their association with MDR phenotypes are contributing to the spread of MDR in Quito, Ecuador.
期刊介绍:
The Journal of Global Antimicrobial Resistance (JGAR) is a quarterly online journal run by an international Editorial Board that focuses on the global spread of antibiotic-resistant microbes.
JGAR is a dedicated journal for all professionals working in research, health care, the environment and animal infection control, aiming to track the resistance threat worldwide and provides a single voice devoted to antimicrobial resistance (AMR).
Featuring peer-reviewed and up to date research articles, reviews, short notes and hot topics JGAR covers the key topics related to antibacterial, antiviral, antifungal and antiparasitic resistance.