{"title":"The complete plastome of <i>Amaranthus roxburghianus</i> (Amaranthaceae).","authors":"Liqiang Wang, Xiaohan Zhang, Hongqin Li, Shu Wang","doi":"10.1080/23802359.2024.2378996","DOIUrl":null,"url":null,"abstract":"<p><p><i>Amaranthus roxburghianus</i> H.W. Kung 1935, belonging to the Amaranthaceae family, is recognized for its significant medicinal properties. However, molecular research on this species has been limited. This study represents the inaugural documentation of the sequencing and assembly of the complete plastome of <i>A. roxburghianus</i>. The genome spans a total length of 149,969 base pairs (bp), exhibiting a conventional quadripartite structure. This structure comprises a large single-copy (LSC) region of 83,917 bp, a small single-copy (SSC) region of 18,124 bp, and two inverted repeat (IR) regions, each extending to 23,964 bp. In its entirety, the <i>A. roxburghianus</i> plastome encompasses 128 genes, of which 107 are unique, encompassing 77 individual protein-coding genes, 26 unique tRNA genes, and four unique rRNA genes. Phylogenetic analysis has shown a close resemblance between <i>A. roxburghianus</i> and <i>A. polygonoides</i>, both part of the subgenus <i>Albersia</i>. Although the genus <i>Amaranthus</i> is roughly divided into three subgenera, additional plastid genomic data are required for a more accurate assignment of <i>A. albus</i> and <i>A. blitoides</i>. The sequencing of this plastome is a significant step forward, likely to expedite the development of molecular markers and significantly contribute to genetic assays involving this distinctive species.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC467102/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/23802359.2024.2378996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Amaranthus roxburghianus H.W. Kung 1935, belonging to the Amaranthaceae family, is recognized for its significant medicinal properties. However, molecular research on this species has been limited. This study represents the inaugural documentation of the sequencing and assembly of the complete plastome of A. roxburghianus. The genome spans a total length of 149,969 base pairs (bp), exhibiting a conventional quadripartite structure. This structure comprises a large single-copy (LSC) region of 83,917 bp, a small single-copy (SSC) region of 18,124 bp, and two inverted repeat (IR) regions, each extending to 23,964 bp. In its entirety, the A. roxburghianus plastome encompasses 128 genes, of which 107 are unique, encompassing 77 individual protein-coding genes, 26 unique tRNA genes, and four unique rRNA genes. Phylogenetic analysis has shown a close resemblance between A. roxburghianus and A. polygonoides, both part of the subgenus Albersia. Although the genus Amaranthus is roughly divided into three subgenera, additional plastid genomic data are required for a more accurate assignment of A. albus and A. blitoides. The sequencing of this plastome is a significant step forward, likely to expedite the development of molecular markers and significantly contribute to genetic assays involving this distinctive species.