Linking Cerebral Malaria Pathogenesis to APOE-Mediated Amyloidosis: Observations and Hypothesis.

IF 4.6 2区 医学 Q1 NEUROSCIENCES Molecular Neurobiology Pub Date : 2025-02-01 Epub Date: 2024-07-18 DOI:10.1007/s12035-024-04366-3
Mwikali Kioko, Shaban Mwangi, James M Njunge, James A Berkley, Philip Bejon, Abdirahman I Abdi
{"title":"Linking Cerebral Malaria Pathogenesis to APOE-Mediated Amyloidosis: Observations and Hypothesis.","authors":"Mwikali Kioko, Shaban Mwangi, James M Njunge, James A Berkley, Philip Bejon, Abdirahman I Abdi","doi":"10.1007/s12035-024-04366-3","DOIUrl":null,"url":null,"abstract":"<p><p>Although most children with cerebral malaria fully recover, more than a fifth of the survivors develop post-discharge neurodevelopmental sequelae suggestive of advanced neuronal injury. However, the cerebral molecular processes initiating neurological dysfunction in cerebral malaria are still debatable. In this article, we explore available data and hypothesise that cerebral malaria might be linked to APOE-mediated amyloidosis, one of the pathological processes associated with Alzheimer's disease. If our hypothesis is tested and found to be true, it could have far-reaching implications for what we know about cerebral malaria pathogenesis.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"1720-1725"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772498/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04366-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Although most children with cerebral malaria fully recover, more than a fifth of the survivors develop post-discharge neurodevelopmental sequelae suggestive of advanced neuronal injury. However, the cerebral molecular processes initiating neurological dysfunction in cerebral malaria are still debatable. In this article, we explore available data and hypothesise that cerebral malaria might be linked to APOE-mediated amyloidosis, one of the pathological processes associated with Alzheimer's disease. If our hypothesis is tested and found to be true, it could have far-reaching implications for what we know about cerebral malaria pathogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑疟疾发病机制与APOE介导的淀粉样变性之间的联系:观察与假设。
虽然大多数脑疟疾患儿都能完全康复,但超过五分之一的幸存者在出院后会出现神经发育后遗症,提示神经元损伤已进入晚期。然而,引发脑疟疾神经功能障碍的脑分子过程仍存在争议。在本文中,我们探讨了现有数据,并假设脑疟疾可能与 APOE 介导的淀粉样变性有关,而淀粉样变性是与阿尔茨海默病相关的病理过程之一。如果我们的假设得到验证并被证实,那么它将对我们所了解的脑疟疾发病机制产生深远的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
期刊最新文献
PD-Like Pathogenesis in Caenorhabditis elegans Intestinally Infected with Nocardia farcinica and the Underlying Molecular Mechanisms. Single-Cell Cortical Transcriptomics Reveals Common and Distinct Changes in Cell-Cell Communication in Alzheimer's and Parkinson's Disease. Identification of Autophagy-Related Genes in Patients with Acute Spinal Cord Injury and Analysis of Potential Therapeutic Targets. Comparative Neuroprotective Potential of Nanoformulated and Free Resveratrol Against Cuprizone-Induced Demyelination in Rats. Single-Nucleus Landscape of Glial Cells and Neurons in Alzheimer's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1