Modelling the effect of sea ice in an ocean tide model

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Ocean Modelling Pub Date : 2024-07-11 DOI:10.1016/j.ocemod.2024.102405
Amey Vasulkar , Martin Verlaan , Cornelis Slobbe , Mikhail Kulikov
{"title":"Modelling the effect of sea ice in an ocean tide model","authors":"Amey Vasulkar ,&nbsp;Martin Verlaan ,&nbsp;Cornelis Slobbe ,&nbsp;Mikhail Kulikov","doi":"10.1016/j.ocemod.2024.102405","DOIUrl":null,"url":null,"abstract":"<div><p>Arctic sea ice leads to a significant dissipation of tidal energy, necessitating its inclusion in global tidal models. However, most global tidal models either neglect or only partially incorporate the impact of sea ice on tides. This study proposes a method to model the dissipative forces exerted by sea ice on tides without directly coupling to a sea ice model, yet utilizing sea ice parameters such as thickness and concentration. Our approach involves (re)-categorizing the sea ice cover into regions dominated either by the velocity difference between sea ice and tides (Vertical Shear (VS)) or by the shear from drifting sea ice on tides (Horizontal Shear (HS)), which primarily govern the energy dissipation between tides and sea ice. The subdivision and resulting areas of these HS and VS regions are based on a nondimensional number referred to as the <em>Friction number</em>, which is the ratio of the internal stress of the sea ice field to the ice–water frictional stress, and directly depends on the thickness and concentration of the sea ice. The new parameterization is validated through a performance assessment comparing it to a commonly used approach of assuming all the sea ice to be stationary (landfast). The seasonal modulation of the M<sub>2</sub> tidal component, quantified as the March–September difference, serves as the performance metric, demonstrating that the new parameterization has better agreement with observations from altimeter- and tide gauge-derived seasonal modulation. The results indicate that the physics of ice–tide interaction is better represented with the new parameterization of sea ice-induced dissipation, making it suitable for investigating the effects of declining sea ice thickness on tides.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"190 ","pages":"Article 102405"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1463500324000921/pdfft?md5=fc8b692b7e238b31be62040dfbbbb53f&pid=1-s2.0-S1463500324000921-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324000921","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Arctic sea ice leads to a significant dissipation of tidal energy, necessitating its inclusion in global tidal models. However, most global tidal models either neglect or only partially incorporate the impact of sea ice on tides. This study proposes a method to model the dissipative forces exerted by sea ice on tides without directly coupling to a sea ice model, yet utilizing sea ice parameters such as thickness and concentration. Our approach involves (re)-categorizing the sea ice cover into regions dominated either by the velocity difference between sea ice and tides (Vertical Shear (VS)) or by the shear from drifting sea ice on tides (Horizontal Shear (HS)), which primarily govern the energy dissipation between tides and sea ice. The subdivision and resulting areas of these HS and VS regions are based on a nondimensional number referred to as the Friction number, which is the ratio of the internal stress of the sea ice field to the ice–water frictional stress, and directly depends on the thickness and concentration of the sea ice. The new parameterization is validated through a performance assessment comparing it to a commonly used approach of assuming all the sea ice to be stationary (landfast). The seasonal modulation of the M2 tidal component, quantified as the March–September difference, serves as the performance metric, demonstrating that the new parameterization has better agreement with observations from altimeter- and tide gauge-derived seasonal modulation. The results indicate that the physics of ice–tide interaction is better represented with the new parameterization of sea ice-induced dissipation, making it suitable for investigating the effects of declining sea ice thickness on tides.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在海洋潮汐模型中模拟海冰的影响
北极海冰导致大量潮汐能量耗散,因此有必要将其纳入全球潮汐模型。然而,大多数全球潮汐模型要么忽略了海冰对潮汐的影响,要么只部分考虑了海冰对潮汐的影响。本研究提出了一种方法来模拟海冰对潮汐产生的耗散力,无需直接与海冰模型耦合,但利用了海冰的厚度和浓度等参数。我们的方法是将海冰覆盖(重新)划分为由海冰与潮汐之间的速度差(垂直剪切力(VS))或漂流海冰对潮汐的剪切力(水平剪切力(HS))主导的区域,这些区域主要控制潮汐与海冰之间的能量耗散。这些水平切变和垂直切变区域的划分和由此产生的区域面积基于一个称为摩擦力数值的无量纲数值,该数值是海冰场内部应力与冰水摩擦应力的比值,直接取决于海冰的厚度和浓度。新的参数化方法通过性能评估进行了验证,并与假定所有海冰都是静止的(陆冰)这一常用方法进行了比较。M2 潮汐分量的季节调制(量化为 3 月至 9 月的差值)作为性能指标,表明新参数化与测高仪和验潮仪得出的季节调制观测结果更一致。结果表明,海冰引起的耗散的新参数化更好地体现了冰潮相互作用的物理原理,使其适用于研究海冰厚度下降对潮汐的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
期刊最新文献
On long-crested ocean rogue waves originating from localized amplitude and frequency modulations Upgrade of the Chilean Wave Atlas database Advancing sea level anomaly modeling in the black sea with LSTM Auto-Encoders: A novel approach Improving ecological modeling: Integrating CNOP-P and adjoint assimilation in a coupled ecological model Impact of phytoplankton, CDOM, and suspended sediments on the vertical attenuation of light, changing heat content and circulation on a continental shelf: A modelling study of the Great Barrier Reef
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1