Impact of Zeeman and hyperfine interactions on the magnetic properties of paramagnetic metal ions: II. Super-hyperfine interactions with surrounding nuclei
{"title":"Impact of Zeeman and hyperfine interactions on the magnetic properties of paramagnetic metal ions: II. Super-hyperfine interactions with surrounding nuclei","authors":"Yu. E. Kandrashkin","doi":"10.1016/j.jmr.2024.107732","DOIUrl":null,"url":null,"abstract":"<div><p>The anisotropic Zeeman and strong hyperfine interactions of a Kramers ion can significantly affect its magnetic properties as well as the interactions with the nearby nuclei. The interactions with the local environment are described in the preceding article. In the current work, the change of the spin states of distant nuclei is studied. Analytical expressions describing the depth of the electron spin echo envelope modulation (ESEEM) are obtained for the ions with anisotropic Zeeman and strong hyperfine interactions. Due to the g-tensor anisotropy, the electron Zeeman interaction axis is tilted in respect to the direction of the external magnetic field which makes non-collinear with the Zeeman interaction axes of the ion and the nearby nuclei and significantly modifies the nuclear spin states. Thus, the isotropic hyperfine interaction, and particularly the Fermi contact interaction can directly contribute to the ESEEM. An additional factor, that can significantly modify the ESEEM signal is the mixing of the multiple oscillations arising when several nuclei occur in optimal conditions for the generation of the nuclear coherence. This situation arises when several EPR transitions of the ion covering a wide range of magnetic fields are examined.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"365 ","pages":"Article 107732"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724001162","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The anisotropic Zeeman and strong hyperfine interactions of a Kramers ion can significantly affect its magnetic properties as well as the interactions with the nearby nuclei. The interactions with the local environment are described in the preceding article. In the current work, the change of the spin states of distant nuclei is studied. Analytical expressions describing the depth of the electron spin echo envelope modulation (ESEEM) are obtained for the ions with anisotropic Zeeman and strong hyperfine interactions. Due to the g-tensor anisotropy, the electron Zeeman interaction axis is tilted in respect to the direction of the external magnetic field which makes non-collinear with the Zeeman interaction axes of the ion and the nearby nuclei and significantly modifies the nuclear spin states. Thus, the isotropic hyperfine interaction, and particularly the Fermi contact interaction can directly contribute to the ESEEM. An additional factor, that can significantly modify the ESEEM signal is the mixing of the multiple oscillations arising when several nuclei occur in optimal conditions for the generation of the nuclear coherence. This situation arises when several EPR transitions of the ion covering a wide range of magnetic fields are examined.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.