Nicolas Bousquet , Laurent Feuilloley , Théo Pierron
{"title":"Local certification of graph decompositions and applications to minor-free classes","authors":"Nicolas Bousquet , Laurent Feuilloley , Théo Pierron","doi":"10.1016/j.jpdc.2024.104954","DOIUrl":null,"url":null,"abstract":"<div><p>Local certification consists in assigning labels to the vertices of a network to certify that some given property is satisfied, in such a way that the labels can be checked locally. In the last few years, certification of graph classes received considerable attention. The goal is to certify that a graph <em>G</em> belongs to a given graph class <span><math><mi>G</mi></math></span>. Such certifications with labels of size <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> (where <em>n</em> is the size of the network) exist for trees, planar graphs and graphs embedded on surfaces. Feuilloley et al. ask if this can be extended to any class of graphs defined by a finite set of forbidden minors.</p><p>In this work, we develop new decomposition tools for graph certification, and apply them to show that for every small enough minor <em>H</em>, <em>H</em>-minor-free graphs can indeed be certified with labels of size <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>. We also show matching lower bounds using a new proof technique.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"193 ","pages":"Article 104954"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524001187","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Local certification consists in assigning labels to the vertices of a network to certify that some given property is satisfied, in such a way that the labels can be checked locally. In the last few years, certification of graph classes received considerable attention. The goal is to certify that a graph G belongs to a given graph class . Such certifications with labels of size (where n is the size of the network) exist for trees, planar graphs and graphs embedded on surfaces. Feuilloley et al. ask if this can be extended to any class of graphs defined by a finite set of forbidden minors.
In this work, we develop new decomposition tools for graph certification, and apply them to show that for every small enough minor H, H-minor-free graphs can indeed be certified with labels of size . We also show matching lower bounds using a new proof technique.
本地认证包括为网络顶点分配标签,以证明满足某些给定属性,这种方式可以在本地检查标签。最近几年,图类认证受到了广泛关注。这种认证的标签大小为 O(logn)(其中 n 是网络的大小),适用于树、平面图和嵌入曲面的图。在这项研究中,我们为图形认证开发了新的分解工具,并应用这些工具证明了对于每一个足够小的次要因子 H,无 H 次要因子的图形确实可以用大小为 O(logn) 的标签进行认证。我们还利用一种新的证明技术展示了匹配的下限。
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.