{"title":"Computational and in vitro binding studies of theophylline against phosphodiesterases functioning in sperm in presence and absence of pentoxifylline","authors":"","doi":"10.1016/j.bpc.2024.107294","DOIUrl":null,"url":null,"abstract":"<div><p>Fertility is a result of a synergy among the sperm's various functions including capacitation, motility, chemotaxis, acrosome reaction, and, finally, the fertilization of the oocyte. Subpar motility is the most common cause of infertility in males. Cyclic adenosine monophosphate (cAMP) signalling underlies motility and is depleted by the phosphodiesterases (PDEs) in sperm, such as PDE10A, PDE1, and PDE4. Therefore, the PDE inhibitor (PDEI) category of fertility drugs aim to enhance motility in assisted reproduction technologies (ARTs) through inhibition of PDEs, though they might have adverse effects on other physiological variables. For example, the popular drug pentoxifylline (PTX), widely used in ARTs, improves motility but causes premature acrosome reaction and exerts toxicity on the fertilized oocyte. Another xanthine-derived drug, theophylline (TP), has been repurposed for treating infertility, but its mechanism of PDE inhibition remains unexplored. Here, using biophysical and computational approaches, we identified that TP binds to the same binding pocket as PTX with higher affinity than PTX. We also found that PTX and TP co-bind to the same binding pocket, but at different sites.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224001236","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fertility is a result of a synergy among the sperm's various functions including capacitation, motility, chemotaxis, acrosome reaction, and, finally, the fertilization of the oocyte. Subpar motility is the most common cause of infertility in males. Cyclic adenosine monophosphate (cAMP) signalling underlies motility and is depleted by the phosphodiesterases (PDEs) in sperm, such as PDE10A, PDE1, and PDE4. Therefore, the PDE inhibitor (PDEI) category of fertility drugs aim to enhance motility in assisted reproduction technologies (ARTs) through inhibition of PDEs, though they might have adverse effects on other physiological variables. For example, the popular drug pentoxifylline (PTX), widely used in ARTs, improves motility but causes premature acrosome reaction and exerts toxicity on the fertilized oocyte. Another xanthine-derived drug, theophylline (TP), has been repurposed for treating infertility, but its mechanism of PDE inhibition remains unexplored. Here, using biophysical and computational approaches, we identified that TP binds to the same binding pocket as PTX with higher affinity than PTX. We also found that PTX and TP co-bind to the same binding pocket, but at different sites.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.