Adsorption behavior of HFCO and COF2 gasses on pristine, Al-doped, and N-doped (8, 0) single-wall carbon nanotubes and pristine aluminum nitride nanotube: A first-principles study
Marjan Ghafari , Hossein Mohammadi-Manesh , Forough Kalantari Fotooh
{"title":"Adsorption behavior of HFCO and COF2 gasses on pristine, Al-doped, and N-doped (8, 0) single-wall carbon nanotubes and pristine aluminum nitride nanotube: A first-principles study","authors":"Marjan Ghafari , Hossein Mohammadi-Manesh , Forough Kalantari Fotooh","doi":"10.1016/j.jfluchem.2024.110317","DOIUrl":null,"url":null,"abstract":"<div><p>The detection of organic pollutants in the environment is crucial due to their significant impact on human health. Formyl fluoride (HFCO) and carbonyl fluoride (COF<sub>2</sub>) are toxic gasses that contribute to stratospheric ozone depletion. To explore a potential sensor material for these compounds, the adsorption properties of HFCO and COF<sub>2</sub> on pristine (8, 0) single-walled carbon nanotubes (SWCNTs), aluminum-doped SWCNTs (Al-SWCNTs), nitrogen-doped SWCNTs (N-SWCNTs), and aluminum nitride nanotube (AlNNTs) were investigated using density functional theory (DFT) calculations. Obtained structural and electronic results reveal no significant after HFCO and COF<sub>2</sub> adsorption on pristine SWCNT. However, the conductivity and polarizability of Al- SWCNT increases throw HFCO and COF<sub>2</sub> adsorption. It was shown that this adsorption strongly depends on molecular orientation toward SWCNT. Structural and electronic findings show that studied molecules undergoes a physical adsorption to N- SWCNT. However, AlNNT was also found to show significant changes in structural and electronic properties after HFCO and COF<sub>2</sub> adsorption. This adsorption leads to a significant (nearly 45%) reduction in the HOMO-LUMO gap of AlNNTs. Therefore, it is proposed from this study that Al-SWCNTs and AlNNTs are promising candidates for HFCO and COF<sub>2</sub> gas sensors. Moreover, AlNNTs exhibit intrinsic detection capabilities without structural manipulation via doping which makes AlNNTs particularly attractive for sensor applications. Moreover, the capability of AlNNT without manipulating makes this nanotube a good and easy made candidate for these compounds adsorption.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022113924000770","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of organic pollutants in the environment is crucial due to their significant impact on human health. Formyl fluoride (HFCO) and carbonyl fluoride (COF2) are toxic gasses that contribute to stratospheric ozone depletion. To explore a potential sensor material for these compounds, the adsorption properties of HFCO and COF2 on pristine (8, 0) single-walled carbon nanotubes (SWCNTs), aluminum-doped SWCNTs (Al-SWCNTs), nitrogen-doped SWCNTs (N-SWCNTs), and aluminum nitride nanotube (AlNNTs) were investigated using density functional theory (DFT) calculations. Obtained structural and electronic results reveal no significant after HFCO and COF2 adsorption on pristine SWCNT. However, the conductivity and polarizability of Al- SWCNT increases throw HFCO and COF2 adsorption. It was shown that this adsorption strongly depends on molecular orientation toward SWCNT. Structural and electronic findings show that studied molecules undergoes a physical adsorption to N- SWCNT. However, AlNNT was also found to show significant changes in structural and electronic properties after HFCO and COF2 adsorption. This adsorption leads to a significant (nearly 45%) reduction in the HOMO-LUMO gap of AlNNTs. Therefore, it is proposed from this study that Al-SWCNTs and AlNNTs are promising candidates for HFCO and COF2 gas sensors. Moreover, AlNNTs exhibit intrinsic detection capabilities without structural manipulation via doping which makes AlNNTs particularly attractive for sensor applications. Moreover, the capability of AlNNT without manipulating makes this nanotube a good and easy made candidate for these compounds adsorption.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.