{"title":"Numerical simulation of borehole compressional wave and shear wave in 3D vug formation","authors":"","doi":"10.1016/j.jappgeo.2024.105446","DOIUrl":null,"url":null,"abstract":"<div><p>The staggered grid finite difference method (SGFDM) of a monopole source is used to simulate a three-dimensional vug reservoir model and study the effect of acoustic logging responses of different vug models on radial probing depth. The results show that the first arrival of the head wave peak of the compressional wave (P-wave) and the shear wave (S-wave) is unrelated to the radius of the vug, and the amplitude of the head wave peak of the P-wave and S-wave decreases as the vug volume increases. Compared with the volume change of the vug, the radial distance from the vug wall has little influence, while the vertical source distance has large influence on the P-wave and S-wave. When there are multiple vugs in the model, the amplitudes of the P-wave and S-wave head wave peaks change sinusoidally with the angle between the vugs. The ellipsoidal vug model with the same volume has a greater influence on the P-wave and S-wave than the spherical vug model. In the ellipsoidal vug model, the axial vug size has a greater impact on the first arrival of the head wave peak, while the radial vug size significantly influences the amplitude of the head wave peak. Finally, we validate the numerical simulation conclusions by comparing them with actual logging data responses in complex formations, demonstrating the practical value of the elastic wave response simulations for vugs.</p></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124001629","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The staggered grid finite difference method (SGFDM) of a monopole source is used to simulate a three-dimensional vug reservoir model and study the effect of acoustic logging responses of different vug models on radial probing depth. The results show that the first arrival of the head wave peak of the compressional wave (P-wave) and the shear wave (S-wave) is unrelated to the radius of the vug, and the amplitude of the head wave peak of the P-wave and S-wave decreases as the vug volume increases. Compared with the volume change of the vug, the radial distance from the vug wall has little influence, while the vertical source distance has large influence on the P-wave and S-wave. When there are multiple vugs in the model, the amplitudes of the P-wave and S-wave head wave peaks change sinusoidally with the angle between the vugs. The ellipsoidal vug model with the same volume has a greater influence on the P-wave and S-wave than the spherical vug model. In the ellipsoidal vug model, the axial vug size has a greater impact on the first arrival of the head wave peak, while the radial vug size significantly influences the amplitude of the head wave peak. Finally, we validate the numerical simulation conclusions by comparing them with actual logging data responses in complex formations, demonstrating the practical value of the elastic wave response simulations for vugs.
采用单极源交错网格有限差分法(SGFDM)模拟三维岩虫储层模型,研究不同岩虫模型的声波测井响应对径向探测深度的影响。结果表明,压缩波(P 波)和剪切波(S 波)头波峰的初至时间与岩浆体半径无关,P 波和 S 波头波峰的振幅随着岩浆体体积的增大而减小。与水槽体积变化相比,水槽壁径向距离对 P 波和 S 波的影响较小,而垂直源距离对 P 波和 S 波的影响较大。当模型中存在多个水口时,P 波和 S 波头波峰的振幅随水口间夹角的变化呈正弦曲线变化。与球形水槽模型相比,相同体积的椭圆形水槽模型对 P 波和 S 波的影响更大。在椭圆形凹槽模型中,轴向凹槽尺寸对顶头波峰的首次到达有较大影响,而径向凹槽尺寸则对顶头波峰的振幅有显著影响。最后,我们将数值模拟结论与复杂地层中的实际测井数据响应进行了比较,从而验证了数值模拟结论,证明了水井弹性波响应模拟的实用价值。
期刊介绍:
The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.