Data-driven image mechanics (D2IM): A deep learning approach to predict displacement and strain fields from undeformed X-ray tomography images – Evaluation of bone mechanics

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Extreme Mechanics Letters Pub Date : 2024-07-14 DOI:10.1016/j.eml.2024.102202
Peter Soar , Marco Palanca , Enrico Dall’Ara , Gianluca Tozzi
{"title":"Data-driven image mechanics (D2IM): A deep learning approach to predict displacement and strain fields from undeformed X-ray tomography images – Evaluation of bone mechanics","authors":"Peter Soar ,&nbsp;Marco Palanca ,&nbsp;Enrico Dall’Ara ,&nbsp;Gianluca Tozzi","doi":"10.1016/j.eml.2024.102202","DOIUrl":null,"url":null,"abstract":"<div><p>The recent advent of deep learning (DL) has enabled data-driven models to pave the way for the full exploitation of rich image datasets from which physics can be learnt. Here we propose a novel data-driven image mechanics (D<sup>2</sup>IM) approach that learns from digital volume correlation (DVC) displacement fields of vertebrae, predicting displacement and strain fields from undeformed X-ray computed tomography (XCT) images. D<sup>2</sup>IM successfully predicted the displacements in all directions, particularly in the cranio-caudal direction of the vertebra, where high correlation (R<sup>2</sup>=0.94) and generally minimal errors were obtained compared to the measured displacements. The predicted axial strain field in the cranio-caudal direction of the vertebra was also consistent in distribution with the measured one, displaying generally reduced errors in the regions within the vertebral body. The application of D<sup>2</sup>IM to lower resolution imaging in initial testing provides promising results indicating the future viability of integrating this technology into a clinical setting. This is the first study using experimental full-field measurements on bone structures from DVC to inform DL-based models such as D<sup>2</sup>IM, which represents a major contribution in the prediction of displacement and strain fields based only on the greyscale content of undeformed XCT images. In future, D<sup>2</sup>IM will incorporate a range of biological structures and loading scenarios for accurate prediction of physical fields, aiming at clinical translation for improved diagnostics.</p></div><div><h3>Data Availability</h3><p>Code for preparing dataset, training D<sup>2</sup>IM model and visualising/analysing results has been hosted on GitHub: <span><span>https://github.com/PeterSoar/D2IM_Prototype</span><svg><path></path></svg></span></p><p>The dataset used for this study can be found on Figshare: <span><span>https://doi.org/10.6084/m9.figshare.25404220.v1</span><svg><path></path></svg></span></p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"71 ","pages":"Article 102202"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352431624000828/pdfft?md5=9e6b7033d5dfa001056621424d6d7a6c&pid=1-s2.0-S2352431624000828-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624000828","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The recent advent of deep learning (DL) has enabled data-driven models to pave the way for the full exploitation of rich image datasets from which physics can be learnt. Here we propose a novel data-driven image mechanics (D2IM) approach that learns from digital volume correlation (DVC) displacement fields of vertebrae, predicting displacement and strain fields from undeformed X-ray computed tomography (XCT) images. D2IM successfully predicted the displacements in all directions, particularly in the cranio-caudal direction of the vertebra, where high correlation (R2=0.94) and generally minimal errors were obtained compared to the measured displacements. The predicted axial strain field in the cranio-caudal direction of the vertebra was also consistent in distribution with the measured one, displaying generally reduced errors in the regions within the vertebral body. The application of D2IM to lower resolution imaging in initial testing provides promising results indicating the future viability of integrating this technology into a clinical setting. This is the first study using experimental full-field measurements on bone structures from DVC to inform DL-based models such as D2IM, which represents a major contribution in the prediction of displacement and strain fields based only on the greyscale content of undeformed XCT images. In future, D2IM will incorporate a range of biological structures and loading scenarios for accurate prediction of physical fields, aiming at clinical translation for improved diagnostics.

Data Availability

Code for preparing dataset, training D2IM model and visualising/analysing results has been hosted on GitHub: https://github.com/PeterSoar/D2IM_Prototype

The dataset used for this study can be found on Figshare: https://doi.org/10.6084/m9.figshare.25404220.v1

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动图像力学(D2IM):从未变形 X 射线断层扫描图像预测位移和应变场的深度学习方法 - 骨骼力学评估
最近出现的深度学习(DL)使数据驱动模型成为可能,为充分利用丰富的图像数据集学习物理学铺平了道路。在这里,我们提出了一种新颖的数据驱动图像力学(D2IM)方法,该方法可从椎骨的数字体积相关(DVC)位移场中学习,预测未变形 X 射线计算机断层扫描(XCT)图像中的位移和应变场。D2IM 成功预测了所有方向的位移,尤其是椎体的颅尾方向,与测量的位移相比,其相关性很高(R2=0.94),误差一般也很小。椎体颅尾方向的预测轴向应变场在分布上也与测量值一致,椎体内部区域的误差普遍减小。在初步测试中将 D2IM 应用于低分辨率成像,取得了令人鼓舞的结果,表明未来将该技术整合到临床环境中的可行性。这是第一项使用 DVC 骨结构实验性全场测量结果为 D2IM 等基于 DL 的模型提供信息的研究,这是仅根据未变形 XCT 图像的灰度内容预测位移和应变场的重大贡献。未来,D2IM 将纳入一系列生物结构和加载情景,以准确预测物理场,从而实现临床转化,改进诊断。数据可用性用于准备数据集、训练 D2IM 模型和可视化/分析结果的代码已托管在 GitHub 上:https://github.com/PeterSoar/D2IM_PrototypeThe 本研究使用的数据集可在 Figshare 上找到:https://doi.org/10.6084/m9.figshare.25404220.v1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
期刊最新文献
Full range fragmentation simulation of nanoflake filler-matrix composite coatings on a polymer substrate A kinematics-based single-actuator setup for constant-curvature bending tests in extremely large deformations Aperture size control in kirigami metamaterials: Towards enhanced performance and applications Origami electronic membranes as highly shape-morphable mechanical and environmental sensing systems Effect of rate on the response and localized transformation patterns in NiTi Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1