Hadi Hosseini , Zhiyi Huang , Ayumi Igarashi , Nisarg Shah
{"title":"Class fairness in online matching","authors":"Hadi Hosseini , Zhiyi Huang , Ayumi Igarashi , Nisarg Shah","doi":"10.1016/j.artint.2024.104177","DOIUrl":null,"url":null,"abstract":"<div><p>We initiate the study of fairness among <em>classes</em> of agents in online bipartite matching where there is a given set of offline vertices (aka agents) and another set of vertices (aka items) that arrive online and must be matched irrevocably upon arrival. In this setting, agents are partitioned into classes and the matching is required to be fair with respect to the classes. We adapt popular fairness notions (e.g. envy-freeness, proportionality, and maximin share) and their relaxations to this setting and study deterministic algorithms for matching indivisible items (leading to integral matchings) and for matching divisible items (leading to fractional matchings). For matching indivisible items, we propose an adaptive-priority-based algorithm, <span>Match-and-Shift</span>, prove that it achieves <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-approximation of both class envy-freeness up to one item and class maximin share fairness, and show that each guarantee is tight. For matching divisible items, we design a water-filling-based algorithm, <span>Equal-Filling</span>, that achieves <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac><mo>)</mo></math></span>-approximation of class envy-freeness and class proportionality; we prove <span><math><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac></math></span> to be tight for class proportionality and establish a <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> upper bound on class envy-freeness. Finally, we discuss several challenges in designing randomized algorithms that achieve reasonable fairness approximation ratios. Nonetheless, we build upon <span>Equal-Filling</span> to design a randomized algorithm for matching indivisible items, <span>Equal-Filling-OCS</span>, which achieves 0.593-approximation of class proportionality.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"335 ","pages":"Article 104177"},"PeriodicalIF":5.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224001139","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We initiate the study of fairness among classes of agents in online bipartite matching where there is a given set of offline vertices (aka agents) and another set of vertices (aka items) that arrive online and must be matched irrevocably upon arrival. In this setting, agents are partitioned into classes and the matching is required to be fair with respect to the classes. We adapt popular fairness notions (e.g. envy-freeness, proportionality, and maximin share) and their relaxations to this setting and study deterministic algorithms for matching indivisible items (leading to integral matchings) and for matching divisible items (leading to fractional matchings). For matching indivisible items, we propose an adaptive-priority-based algorithm, Match-and-Shift, prove that it achieves -approximation of both class envy-freeness up to one item and class maximin share fairness, and show that each guarantee is tight. For matching divisible items, we design a water-filling-based algorithm, Equal-Filling, that achieves -approximation of class envy-freeness and class proportionality; we prove to be tight for class proportionality and establish a upper bound on class envy-freeness. Finally, we discuss several challenges in designing randomized algorithms that achieve reasonable fairness approximation ratios. Nonetheless, we build upon Equal-Filling to design a randomized algorithm for matching indivisible items, Equal-Filling-OCS, which achieves 0.593-approximation of class proportionality.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.