Fu Li , Guangsheng Ma , Feier Chen , Qiuyun Lyu , Zhen Wang , Jian Zhang
{"title":"Enhanced enterprise-student matching with meta-path based graph neural network","authors":"Fu Li , Guangsheng Ma , Feier Chen , Qiuyun Lyu , Zhen Wang , Jian Zhang","doi":"10.1016/j.jksuci.2024.102116","DOIUrl":null,"url":null,"abstract":"<div><p>Job-seeking is always an inescapable challenge for graduates. It may take a lot of time to find satisfying jobs due to the information gap between students who need satisfying offers and enterprises which ask for proper candidates. Although campus recruiting and job advertisements on the Internet could provide partial information, it is still not enough to help students and enterprises know each other and effectively match a graduate with a job. To narrow the information gap, we propose to recommend jobs for graduates based on historical employment data. Specifically, we construct a heterogeneous information network to characterize the relations between <em>students</em>, <em>enterprises</em> and <em>industries</em>. And then, we propose a meta-path based graph neural network, namely GraphRecruit, to further learn both latent student and enterprise portrait representations. The designed meta-paths connect students with their preferred enterprises and industries from different aspects. Also, we apply genetic algorithm optimization for meta-path selection according to application scenarios to enhance recommendation suitability and accuracy. To show the effectiveness of GraphRecruit, we collect five-year employment data and conduct extensive experiments comparing GraphRecruit with 4 classical baselines. The results demonstrate the superior performance of the proposed method.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 6","pages":"Article 102116"},"PeriodicalIF":5.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002052/pdfft?md5=b92e9095dd2f3d188041171d9ee66fb2&pid=1-s2.0-S1319157824002052-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002052","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Job-seeking is always an inescapable challenge for graduates. It may take a lot of time to find satisfying jobs due to the information gap between students who need satisfying offers and enterprises which ask for proper candidates. Although campus recruiting and job advertisements on the Internet could provide partial information, it is still not enough to help students and enterprises know each other and effectively match a graduate with a job. To narrow the information gap, we propose to recommend jobs for graduates based on historical employment data. Specifically, we construct a heterogeneous information network to characterize the relations between students, enterprises and industries. And then, we propose a meta-path based graph neural network, namely GraphRecruit, to further learn both latent student and enterprise portrait representations. The designed meta-paths connect students with their preferred enterprises and industries from different aspects. Also, we apply genetic algorithm optimization for meta-path selection according to application scenarios to enhance recommendation suitability and accuracy. To show the effectiveness of GraphRecruit, we collect five-year employment data and conduct extensive experiments comparing GraphRecruit with 4 classical baselines. The results demonstrate the superior performance of the proposed method.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.