Zr‐MOF nanosheets featuring benzothiadiazoles enable efficient visible light driven photooxidation of sulfides and amines

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-07-16 DOI:10.1002/cnma.202400302
Yuan-Zhi Tan, Yu-Qing Zhao, Xing-Yu Zhou, Ying-Mei Zhao, Bi-Fu Luo, Hai-Xing Li, Jin-Liang Zhuang
{"title":"Zr‐MOF nanosheets featuring benzothiadiazoles enable efficient visible light driven photooxidation of sulfides and amines","authors":"Yuan-Zhi Tan, Yu-Qing Zhao, Xing-Yu Zhou, Ying-Mei Zhao, Bi-Fu Luo, Hai-Xing Li, Jin-Liang Zhuang","doi":"10.1002/cnma.202400302","DOIUrl":null,"url":null,"abstract":"Ultrathin zirconium‐based metal–organic framework (MOF) nanosheets, embedded with photochromic units, are expected to be highly efficient heterogeneous photocatalysts, thanks to their rich catalytic sites, short diffusion paths, and effective separation of photogenerated charge carriers. Herein, we reported the synthesis of novel Zr‐MOF nanosheets (Zr‐BTDB) through a solvothermal synthesis that integrates benzothiadiazole (BTz) as a photochromic moiety within the framework of MOF. The Zr‐BTDB nanosheets processes a [Zr12(μ3‐O)8(μ3‐OH)8(μ2‐OH)6] cluster with hcp topology. Importantly, Zr‐BTDB nanosheets exhibit excellent photocatalytic activity for the photooxidation of sulfides and amines at room temperature under blue light irradiation. Notably, these nanosheets maintain their photocatalytic activity and selectivity for up to five cycles without significant loss of activity and crystallinity. Systematical catalytic reactions revealed that the Zr‐BTDB nanosheets enable the generation of singlet oxygen (1O2) and superoxide radical (O2•–) under visible light irradiation, which is critical reactive oxygen species for the photooxidation of sulfides and benzylamines. Our work represents a straightforward route for the preparation of ultrathin, water stable, and visible‐light‐activated Zr‐MOF nanosheets, offering new potentials for the selective photooxidation of sulfides and amines in an eco‐friendly way.","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cnma.202400302","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrathin zirconium‐based metal–organic framework (MOF) nanosheets, embedded with photochromic units, are expected to be highly efficient heterogeneous photocatalysts, thanks to their rich catalytic sites, short diffusion paths, and effective separation of photogenerated charge carriers. Herein, we reported the synthesis of novel Zr‐MOF nanosheets (Zr‐BTDB) through a solvothermal synthesis that integrates benzothiadiazole (BTz) as a photochromic moiety within the framework of MOF. The Zr‐BTDB nanosheets processes a [Zr12(μ3‐O)8(μ3‐OH)8(μ2‐OH)6] cluster with hcp topology. Importantly, Zr‐BTDB nanosheets exhibit excellent photocatalytic activity for the photooxidation of sulfides and amines at room temperature under blue light irradiation. Notably, these nanosheets maintain their photocatalytic activity and selectivity for up to five cycles without significant loss of activity and crystallinity. Systematical catalytic reactions revealed that the Zr‐BTDB nanosheets enable the generation of singlet oxygen (1O2) and superoxide radical (O2•–) under visible light irradiation, which is critical reactive oxygen species for the photooxidation of sulfides and benzylamines. Our work represents a straightforward route for the preparation of ultrathin, water stable, and visible‐light‐activated Zr‐MOF nanosheets, offering new potentials for the selective photooxidation of sulfides and amines in an eco‐friendly way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以苯并噻二唑为特征的 Zr-MOF 纳米片能在可见光驱动下实现硫化物和胺的高效光氧化反应
嵌入光致变色单元的超薄锆基金属有机框架(MOF)纳米片具有丰富的催化位点、较短的扩散路径和有效分离光生电荷载流子的特性,有望成为高效的异相光催化剂。在此,我们报道了通过溶热合成法合成新型 Zr-MOF 纳米片(Zr-BTDB)的过程,该方法在 MOF 框架内整合了苯并噻二唑(BTz)作为光致变色分子。Zr-BTDB 纳米片形成了具有 hcp 拓扑结构的[Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6]簇。重要的是,Zr-BTDB 纳米片在室温蓝光照射下对硫化物和胺的光氧化表现出卓越的光催化活性。值得注意的是,这些纳米片在保持光催化活性和选择性长达五个周期后,其活性和结晶度都没有明显下降。系统催化反应表明,在可见光照射下,Zr-BTDB 纳米片能够生成单线态氧(1O2)和超氧自由基(O2--),而单线态氧和超氧自由基是硫化物和苄胺光氧化反应的关键活性氧。我们的工作为制备超薄、水稳定和可见光激活的 Zr-MOF 纳米片提供了一条直接的途径,为以生态友好的方式选择性光氧化硫化物和胺提供了新的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Expression of Concern: Affinity of Glycan-Modified Nanodiamonds towards Lectins and Uropathogenic Escherichia Coli Front Cover: Tailoring Energy Structure of Low-Toxic Ternary Ag−Bi−S Quantum Dots through Solution-Phase Synthesis for Quantum-Dot-Sensitized Solar Cells (ChemNanoMat 10/2024) Cover Feature: One-Pot Synthesis of Orange Emissive Carbon Dots Specific for Staining of Mitochondria in both Cancer and Non-Cancer Cells (ChemNanoMat 10/2024) Alkalized MQDs /Bi2S3 Porous Structure For Efficient Photocatalytic CO2 Reduction Optimized Tungsten Disulfide via Pyrolytic Deposition for Improved Zn-ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1