Alexandra “Sasha” Gavryushkina, H. R. Pinkney, Sarah D. Diermeier, A. Gavryushkin
{"title":"Filtering for highly variable genes and high quality spots improves phylogenetic analysis of cancer spatial transcriptomics Visium data","authors":"Alexandra “Sasha” Gavryushkina, H. R. Pinkney, Sarah D. Diermeier, A. Gavryushkin","doi":"10.1101/2024.07.11.603166","DOIUrl":null,"url":null,"abstract":"Phylogenetic relationship of cells within tumours can help us to understand how cancer develops in space and time, iden-tify driver mutations and other evolutionary events that enable can-cer growth and spread. Numerous studies have reconstructed phylo-genies from single-cell DNA-seq data. Here we are looking into the problem of phylogenetic analysis of spatially resolved near single-cell RNA-seq data, which is a cost-efficient alternative (or complemen-tary) data source that integrates multiple sources of evolutionary information including point mutations, copy-number changes, and epimutations. Recent attempts to use such data, although promis-ing, raised many methodological challenges. Here, we explored data-preprocessing and modelling approaches for evolutionary analyses of Visium spatial transcriptomics data. We conclude that using only highly variable genes and accounting for heterogeneous RNA capture across tissue-covered spots improves the reconstructed topological relationships and influences estimated branch lengths.","PeriodicalId":9124,"journal":{"name":"bioRxiv","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.11.603166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Phylogenetic relationship of cells within tumours can help us to understand how cancer develops in space and time, iden-tify driver mutations and other evolutionary events that enable can-cer growth and spread. Numerous studies have reconstructed phylo-genies from single-cell DNA-seq data. Here we are looking into the problem of phylogenetic analysis of spatially resolved near single-cell RNA-seq data, which is a cost-efficient alternative (or complemen-tary) data source that integrates multiple sources of evolutionary information including point mutations, copy-number changes, and epimutations. Recent attempts to use such data, although promis-ing, raised many methodological challenges. Here, we explored data-preprocessing and modelling approaches for evolutionary analyses of Visium spatial transcriptomics data. We conclude that using only highly variable genes and accounting for heterogeneous RNA capture across tissue-covered spots improves the reconstructed topological relationships and influences estimated branch lengths.