{"title":"Controllable self-assembly of tyrosine-rich triblock peptides into robust collagen mimetic bioscaffolds for aging skin rejuvenation","authors":"Linyan Yao, Biyang Ling, Wenjie Huang, Qi Wang, Xiangdong Cai, Jianxi Xiao","doi":"10.1093/rb/rbae085","DOIUrl":null,"url":null,"abstract":"\n Skin aging, a complex physiological process characterized by alterations in skin structure and function, seriously affects human life. Collagen holds considerable potential in aging skin treatment, while animal-derived collagen poses risks of pathogen transmission. Self-assembled peptides have garnered increasing attention in creating collagen mimetic materials; however, previous reported self-assembled peptides rely on vulnerable non-covalent interactions or lack the capability of controlling morphology and incorporating functional motifs, limiting their ability to mimic collagen structure and function. We have herein created a controllable tyrosine-rich triblock peptide system capable of self-assembling into robust collagen mimetic bioscaffolds for rejuvenating aging skin. Through ruthenium-mediated crosslinking, these peptides self-assemble into well-defined nanospheres or collagen-mimetic scaffolds, precisely regulated by the triple-helical structure and tyrosine distribution. The self-assembled collagen mimetic scaffolds exhibit outstanding resistances to various solvents and pH conditions. The integrin-binding motif has been incorporated into the triple helical block without disrupting their assembly, while endowing them with superior bioactivities, effectively promoting cell adhesion and proliferation. In vivo studies demonstrated their efficacy in treating photoaging skin by accelerating collagen regeneration and activating fibroblasts. The self-assembled tyrosine-rich triblock peptides represent a versatile system for creating robust collagen mimetic biomaterials, providing great potential in skin rejuvenation and tissue regeneration.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae085","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Skin aging, a complex physiological process characterized by alterations in skin structure and function, seriously affects human life. Collagen holds considerable potential in aging skin treatment, while animal-derived collagen poses risks of pathogen transmission. Self-assembled peptides have garnered increasing attention in creating collagen mimetic materials; however, previous reported self-assembled peptides rely on vulnerable non-covalent interactions or lack the capability of controlling morphology and incorporating functional motifs, limiting their ability to mimic collagen structure and function. We have herein created a controllable tyrosine-rich triblock peptide system capable of self-assembling into robust collagen mimetic bioscaffolds for rejuvenating aging skin. Through ruthenium-mediated crosslinking, these peptides self-assemble into well-defined nanospheres or collagen-mimetic scaffolds, precisely regulated by the triple-helical structure and tyrosine distribution. The self-assembled collagen mimetic scaffolds exhibit outstanding resistances to various solvents and pH conditions. The integrin-binding motif has been incorporated into the triple helical block without disrupting their assembly, while endowing them with superior bioactivities, effectively promoting cell adhesion and proliferation. In vivo studies demonstrated their efficacy in treating photoaging skin by accelerating collagen regeneration and activating fibroblasts. The self-assembled tyrosine-rich triblock peptides represent a versatile system for creating robust collagen mimetic biomaterials, providing great potential in skin rejuvenation and tissue regeneration.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.