Emergence of cellular nematic order is a conserved feature of gastrulation in animal embryos

bioRxiv Pub Date : 2024-07-16 DOI:10.1101/2024.07.11.603175
Xin Li, Robert J. Huebner, Margot Kossmann Williams, Jessica Sawyer, M. Peifer, John B. Wallingford, D. Thirumalai
{"title":"Emergence of cellular nematic order is a conserved feature of gastrulation in animal embryos","authors":"Xin Li, Robert J. Huebner, Margot Kossmann Williams, Jessica Sawyer, M. Peifer, John B. Wallingford, D. Thirumalai","doi":"10.1101/2024.07.11.603175","DOIUrl":null,"url":null,"abstract":"Cells undergo dramatic changes in morphology during embryogenesis, yet how these changes affect the formation of ordered tissues remains elusive. Here we find that the emergence of a nematic liquid crystal phase occurs in cells during gastrulation in the development of embryos of fish, frogs, and fruit flies. Moreover, the spatial correlations in all three organisms are long-ranged and follow a similar power-law decay (y∼x−α) with α less than unity for the nematic order parameter, suggesting a common underlying physical mechanism unifies events in these distantly related species. All three species exhibit similar propagation of the nematic phase, reminiscent of nucleation and growth phenomena. Finally, we use a theoretical model along with disruptions of cell adhesion and cell specification to characterize the minimal features required for formation of the nematic phase. Our results provide a framework for understanding a potentially universal features of metazoan embryogenesis and shed light on the advent of ordered structures during animal development.","PeriodicalId":9124,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.11.603175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cells undergo dramatic changes in morphology during embryogenesis, yet how these changes affect the formation of ordered tissues remains elusive. Here we find that the emergence of a nematic liquid crystal phase occurs in cells during gastrulation in the development of embryos of fish, frogs, and fruit flies. Moreover, the spatial correlations in all three organisms are long-ranged and follow a similar power-law decay (y∼x−α) with α less than unity for the nematic order parameter, suggesting a common underlying physical mechanism unifies events in these distantly related species. All three species exhibit similar propagation of the nematic phase, reminiscent of nucleation and growth phenomena. Finally, we use a theoretical model along with disruptions of cell adhesion and cell specification to characterize the minimal features required for formation of the nematic phase. Our results provide a framework for understanding a potentially universal features of metazoan embryogenesis and shed light on the advent of ordered structures during animal development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞线序的出现是动物胚胎胃形成的一个保守特征
细胞在胚胎发育过程中形态发生了巨大变化,但这些变化如何影响有序组织的形成仍是个谜。在这里,我们发现在鱼类、青蛙和果蝇的胚胎发育过程中,细胞中出现了向列液晶相。此外,这三种生物的空间相关性都是远距离的,并且遵循相似的幂律衰减(y∼x-α),向列阶次参数α小于一,这表明这些远亲物种的事件有一个共同的基本物理机制。所有这三种物质都表现出类似的向列相传播,让人联想到成核和生长现象。最后,我们利用一个理论模型以及细胞粘附和细胞规格的破坏来描述形成向列相所需的最小特征。我们的研究结果为理解元古宙胚胎发生的潜在普遍特征提供了一个框架,并揭示了动物发育过程中有序结构的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DGTS overproduced in seed plants is excluded from plastid membranes and promotes endomembrane expansion A distant TANGO1 family member promotes vitellogenin export from the ER in C. elegans Diet-induced obesity mediated through Estrogen-Related Receptor α is independent of intestinal function The Rbfox1/LASR complex controls alternative pre-mRNA splicing by recognition of multi-part RNA regulatory modules The Once and Future Fish: 1300 years of Atlantic herring population structure and demography revealed through ancient DNA and mixed-stock analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1