Morphological Transitions of Block Copolymer Micelles: Implications for Mesoporous Materials Ordering

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Macromolecular Theory and Simulations Pub Date : 2024-07-16 DOI:10.1002/mats.202400046
Nicolas Moreno, Suzana Nunes, Victor Calo
{"title":"Morphological Transitions of Block Copolymer Micelles: Implications for Mesoporous Materials Ordering","authors":"Nicolas Moreno, Suzana Nunes, Victor Calo","doi":"10.1002/mats.202400046","DOIUrl":null,"url":null,"abstract":"The design of block‐copolymer‐based functional materials, including mesoporous membranes and nanoparticles, requires a comprehensive understanding of the hierarchical assembly of block copolymers in selective solvents into micelles and subsequent ordered phases. It is hypothesized that micellar ordering and characteristic assembly can be described using a set of phase parameters that account for entropic and enthalpic interactions. Dissipative particle dynamics (DPD) simulations are used to systematically investigate the self‐assembly of semidiluted block copolymers, resembling isoporous membrane preparation conditions. The effect of Flory–Huggins interaction parameters, block lengths, and concentration on the morphology and polydispersity of the micelles is evaluated. The interaction parameters are mapped into Flory–Huggins theory by considering the block's conformation. These results reveal the effect of polymer concentration and solvent affinity on the morphological transition of the aggregates, in agreement with existing experimental evidence. It is identified that monodisperse‐spherical micelles in solution are fundamental to stabilize ordered states. Weak solvent segregation of the largest block, curvature of the core‐corona interface, and stretching of the corona‐forming one are found to be key to stabilize monodisperse assemblies. These conditions can be predicted using spherical‐micelles packing considerations and a global phase parameter from the Flory–Huggins theory. This study provides valuable insights into the self‐assembly of diblock copolymers and offers a potential way to optimize the preparation of mesoporous ordered structures and micelle ordering in semidiluted systems.","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mats.202400046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The design of block‐copolymer‐based functional materials, including mesoporous membranes and nanoparticles, requires a comprehensive understanding of the hierarchical assembly of block copolymers in selective solvents into micelles and subsequent ordered phases. It is hypothesized that micellar ordering and characteristic assembly can be described using a set of phase parameters that account for entropic and enthalpic interactions. Dissipative particle dynamics (DPD) simulations are used to systematically investigate the self‐assembly of semidiluted block copolymers, resembling isoporous membrane preparation conditions. The effect of Flory–Huggins interaction parameters, block lengths, and concentration on the morphology and polydispersity of the micelles is evaluated. The interaction parameters are mapped into Flory–Huggins theory by considering the block's conformation. These results reveal the effect of polymer concentration and solvent affinity on the morphological transition of the aggregates, in agreement with existing experimental evidence. It is identified that monodisperse‐spherical micelles in solution are fundamental to stabilize ordered states. Weak solvent segregation of the largest block, curvature of the core‐corona interface, and stretching of the corona‐forming one are found to be key to stabilize monodisperse assemblies. These conditions can be predicted using spherical‐micelles packing considerations and a global phase parameter from the Flory–Huggins theory. This study provides valuable insights into the self‐assembly of diblock copolymers and offers a potential way to optimize the preparation of mesoporous ordered structures and micelle ordering in semidiluted systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌段共聚物胶束的形态转变:介孔材料有序化的意义
要设计基于嵌段聚合物的功能材料,包括介孔膜和纳米粒子,就必须全面了解嵌段聚合物在选择性溶剂中分层组装成胶束和后续有序相的过程。据推测,胶束有序化和特征组装可以用一组考虑了熵和焓相互作用的相参数来描述。耗散粒子动力学(DPD)模拟用于系统研究半稀释嵌段共聚物的自组装,类似于等孔膜的制备条件。评估了 Flory-Huggins 相互作用参数、嵌段长度和浓度对胶束形态和多分散性的影响。通过考虑嵌段的构象,将相互作用参数映射到 Flory-Huggins 理论中。这些结果揭示了聚合物浓度和溶剂亲和性对聚合体形态转变的影响,与现有的实验证据一致。研究发现,溶液中的单分散球形胶束是稳定有序状态的基础。研究发现,最大区块的弱溶剂偏析、核心-电晕界面的曲率以及电晕形成区块的拉伸是稳定单分散集合体的关键。这些条件可通过球形微胞堆积考虑因素和 Flory-Huggins 理论中的全局相参数进行预测。这项研究为二嵌段共聚物的自组装提供了宝贵的见解,并为优化半稀释体系中介孔有序结构和胶束有序化的制备提供了潜在的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
期刊最新文献
Masthead: Macromol. Theory Simul. 5/2024 Investigating the Effect of Rheological Parameter Ratios on the Mixing Properties of TPU Blends Rheological Equivalent Circuit Model Using Electrochemical Impedance Analysis Effect of Hydrolyzed Polyacrylamide on the Emulsion Stability by Multiple Light Scattering and Molecular Dynamics Simulation The Importance of the Knowledge of Errors in the Measurements in the Determination of Copolymer Reactivity Ratios from Composition Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1