Direct piriform-to-auditory cortical projections shape auditory-olfactory integration

bioRxiv Pub Date : 2024-07-16 DOI:10.1101/2024.07.11.602976
Nathan W. Vogler, Ruoyi Chen, Alister Virkler, Violet Y. Tu, Jay A. Gottfried, M. Geffen
{"title":"Direct piriform-to-auditory cortical projections shape auditory-olfactory integration","authors":"Nathan W. Vogler, Ruoyi Chen, Alister Virkler, Violet Y. Tu, Jay A. Gottfried, M. Geffen","doi":"10.1101/2024.07.11.602976","DOIUrl":null,"url":null,"abstract":"In a real-world environment, the brain must integrate information from multiple sensory modalities, including the auditory and olfactory systems. However, little is known about the neuronal circuits governing how odors influence and modulate sound processing. Here, we investigated the mechanisms underlying auditory-olfactory integration using anatomical, electrophysiological, and optogenetic approaches, focusing on the auditory cortex as a key locus for cross-modal integration. First, retrograde and anterograde viral tracing strategies revealed a direct projection from the piriform cortex to the auditory cortex. Next, using in vivo electrophysiological recordings of neuronal activity in the auditory cortex of awake mice, we found that odor stimuli modulate auditory cortical responses to sound. Finally, we used in vivo optogenetic manipulations during electrophysiology to demonstrate that olfactory modulation in auditory cortex, specifically, odor-driven enhancement of sound responses, depends on direct input from the piriform cortex. Together, our results identify a novel cortical circuit shaping olfactory modulation in the auditory cortex, shedding new light on the neuronal mechanisms underlying auditory-olfactory integration. Significance Statement All living organisms exist within multisensory environments, yet there is a lack in our understanding of how the brain integrates multisensory information. This work elucidates novel circuits governing auditory-olfactory integration in the auditory cortex. Our results shed new light on a relatively understudied area of multisensory research, promising a more robust understanding of how animals and humans perceive and interact within complex environments.","PeriodicalId":9124,"journal":{"name":"bioRxiv","volume":"59 30","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.11.602976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a real-world environment, the brain must integrate information from multiple sensory modalities, including the auditory and olfactory systems. However, little is known about the neuronal circuits governing how odors influence and modulate sound processing. Here, we investigated the mechanisms underlying auditory-olfactory integration using anatomical, electrophysiological, and optogenetic approaches, focusing on the auditory cortex as a key locus for cross-modal integration. First, retrograde and anterograde viral tracing strategies revealed a direct projection from the piriform cortex to the auditory cortex. Next, using in vivo electrophysiological recordings of neuronal activity in the auditory cortex of awake mice, we found that odor stimuli modulate auditory cortical responses to sound. Finally, we used in vivo optogenetic manipulations during electrophysiology to demonstrate that olfactory modulation in auditory cortex, specifically, odor-driven enhancement of sound responses, depends on direct input from the piriform cortex. Together, our results identify a novel cortical circuit shaping olfactory modulation in the auditory cortex, shedding new light on the neuronal mechanisms underlying auditory-olfactory integration. Significance Statement All living organisms exist within multisensory environments, yet there is a lack in our understanding of how the brain integrates multisensory information. This work elucidates novel circuits governing auditory-olfactory integration in the auditory cortex. Our results shed new light on a relatively understudied area of multisensory research, promising a more robust understanding of how animals and humans perceive and interact within complex environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
听觉-嗅觉整合是由梨状体向听觉皮层的直接投射形成的
在真实世界的环境中,大脑必须整合来自多种感官模式的信息,包括听觉和嗅觉系统。然而,人们对气味如何影响和调节声音处理的神经元回路知之甚少。在这里,我们使用解剖学、电生理学和光遗传学方法研究了听觉-嗅觉整合的基础机制,重点研究了作为跨模态整合关键位置的听觉皮层。首先,逆行和顺行病毒追踪策略揭示了从梨状皮层到听觉皮层的直接投射。接着,我们利用体内电生理记录清醒小鼠听觉皮层的神经元活动,发现气味刺激会调节听觉皮层对声音的反应。最后,我们在电生理学过程中使用了体内光遗传学操作,证明嗅觉对听觉皮层的调节,特别是气味驱动的声音反应增强,取决于梨状皮层的直接输入。总之,我们的研究结果确定了一个新的皮层回路,它塑造了听觉皮层中的嗅觉调节,为听觉-嗅觉整合的神经元机制提供了新的启示。意义声明 所有生物都存在于多感官环境中,但我们对大脑如何整合多感官信息还缺乏了解。这项研究阐明了听觉皮层中支配听觉-嗅觉整合的新电路。我们的研究结果为多感官研究中一个研究相对不足的领域带来了新的启示,有望让我们对动物和人类如何在复杂环境中感知和互动有更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DGTS overproduced in seed plants is excluded from plastid membranes and promotes endomembrane expansion A distant TANGO1 family member promotes vitellogenin export from the ER in C. elegans Diet-induced obesity mediated through Estrogen-Related Receptor α is independent of intestinal function The Rbfox1/LASR complex controls alternative pre-mRNA splicing by recognition of multi-part RNA regulatory modules The Once and Future Fish: 1300 years of Atlantic herring population structure and demography revealed through ancient DNA and mixed-stock analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1