Nargess Sadeghzadeh-Nokhodberiz, Mohammad Reza Sadeghi, Rohollah Barzamini, Allahyar Montazeri
{"title":"Distributed safe formation tracking control of multiquadcopter systems using barrier Lyapunov function","authors":"Nargess Sadeghzadeh-Nokhodberiz, Mohammad Reza Sadeghi, Rohollah Barzamini, Allahyar Montazeri","doi":"10.3389/frobt.2024.1370104","DOIUrl":null,"url":null,"abstract":"Coordinating the movements of a robotic fleet using consensus-based techniques is an important problem in achieving the desired goal of a specific task. Although most available techniques developed for consensus-based control ignore the collision of robots in the transient phase, they are either computationally expensive or cannot be applied in environments with dynamic obstacles. Therefore, we propose a new distributed collision-free formation tracking control scheme for multiquadcopter systems by exploiting the properties of the barrier Lyapunov function (BLF). Accordingly, the problem is formulated in a backstepping setting, and a distributed control law that guarantees collision-free formation tracking of the quads is derived. In other words, the problems of both tracking and interagent collision avoidance with a predefined accuracy are formulated using the proposed BLF for position subsystems, and the controllers are designed through augmentation of a quadratic Lyapunov function. Owing to the underactuated nature of the quadcopter system, virtual control inputs are considered for the translational (x and y axes) subsystems that are then used to generate the desired values for the roll and pitch angles for the attitude control subsystem. This provides a hierarchical controller structure for each quadcopter. The attitude controller is designed for each quadcopter locally by taking into account a predetermined error limit by another BLF. Finally, simulation results from the MATLAB-Simulink environment are provided to show the accuracy of the proposed method. A numerical comparison with an optimization-based technique is also provided to prove the superiority of the proposed method in terms of the computational cost, steady-state error, and response time.","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":"33 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1370104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Coordinating the movements of a robotic fleet using consensus-based techniques is an important problem in achieving the desired goal of a specific task. Although most available techniques developed for consensus-based control ignore the collision of robots in the transient phase, they are either computationally expensive or cannot be applied in environments with dynamic obstacles. Therefore, we propose a new distributed collision-free formation tracking control scheme for multiquadcopter systems by exploiting the properties of the barrier Lyapunov function (BLF). Accordingly, the problem is formulated in a backstepping setting, and a distributed control law that guarantees collision-free formation tracking of the quads is derived. In other words, the problems of both tracking and interagent collision avoidance with a predefined accuracy are formulated using the proposed BLF for position subsystems, and the controllers are designed through augmentation of a quadratic Lyapunov function. Owing to the underactuated nature of the quadcopter system, virtual control inputs are considered for the translational (x and y axes) subsystems that are then used to generate the desired values for the roll and pitch angles for the attitude control subsystem. This provides a hierarchical controller structure for each quadcopter. The attitude controller is designed for each quadcopter locally by taking into account a predetermined error limit by another BLF. Finally, simulation results from the MATLAB-Simulink environment are provided to show the accuracy of the proposed method. A numerical comparison with an optimization-based technique is also provided to prove the superiority of the proposed method in terms of the computational cost, steady-state error, and response time.