Energy and exergy analysis of drying terebinth in a far infrared-rotary dryer using response surface methodology

IF 2.8 Q2 THERMODYNAMICS Heat Transfer Pub Date : 2024-07-15 DOI:10.1002/htj.23126
Mohammad Kaveh, Yousef Abbaspour-Gilandeh, Malgorzata Nowacka, Davood Kalantari, Hany S. El-Mesery, Ebrahim Taghinezhad
{"title":"Energy and exergy analysis of drying terebinth in a far infrared-rotary dryer using response surface methodology","authors":"Mohammad Kaveh,&nbsp;Yousef Abbaspour-Gilandeh,&nbsp;Malgorzata Nowacka,&nbsp;Davood Kalantari,&nbsp;Hany S. El-Mesery,&nbsp;Ebrahim Taghinezhad","doi":"10.1002/htj.23126","DOIUrl":null,"url":null,"abstract":"<p>Water shows a strong tendency to absorb the energy of wavelengths of 3 and 6 µm, which are in the infrared (IR) range. Therefore, IR dryers are used to dry food and fruits that have a high-water content. Thus, modeling and optimizing energy and exergy parameters of terebinth drying in an IR–rotary drum (RD) dryer were evaluated using the response surface methodology. Independent factors included IR power and rotary rotation speed, and response factors were specific energy consumption (SEC), energy efficiency (EFF), exergy efficiency (EXEFF), specific exergy loss (EXLOSS), and exergy improvement potential (EIP). According to the obtained results, the range of EFF and EXEFF was between 28.93%–9.11% and 0.88%–6.62%, respectively. As IR power and RD speed increased, SEC (123.75–39.21 MJ/kg), EXLOSS (3.97–2.97 MJ/kg), and EIP (3.62–1.009 MJ/kg) decreased, while EFF and EXEFF increased. The results obtained in this study showed that the optimal IR drying power is 616.39 W, and the optimal rotary rotation speed is 13.46 rpm.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4109-4134"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Water shows a strong tendency to absorb the energy of wavelengths of 3 and 6 µm, which are in the infrared (IR) range. Therefore, IR dryers are used to dry food and fruits that have a high-water content. Thus, modeling and optimizing energy and exergy parameters of terebinth drying in an IR–rotary drum (RD) dryer were evaluated using the response surface methodology. Independent factors included IR power and rotary rotation speed, and response factors were specific energy consumption (SEC), energy efficiency (EFF), exergy efficiency (EXEFF), specific exergy loss (EXLOSS), and exergy improvement potential (EIP). According to the obtained results, the range of EFF and EXEFF was between 28.93%–9.11% and 0.88%–6.62%, respectively. As IR power and RD speed increased, SEC (123.75–39.21 MJ/kg), EXLOSS (3.97–2.97 MJ/kg), and EIP (3.62–1.009 MJ/kg) decreased, while EFF and EXEFF increased. The results obtained in this study showed that the optimal IR drying power is 616.39 W, and the optimal rotary rotation speed is 13.46 rpm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用响应面方法分析远红外旋转式烘干机烘干布袋莲的能耗和放能
水很容易吸收波长为 3 和 6 µm 的能量,这些波长属于红外线(IR)范围。因此,红外线干燥器可用于干燥含水量高的食品和水果。因此,使用响应面方法对红外转鼓(RD)干燥机中风信子干燥的能量和放能参数进行建模和优化评估。独立因素包括红外功率和旋转速度,响应因素包括比能耗 (SEC)、能效 (EFF)、放能效率 (EXEFF)、比能量损失 (EXLOSS) 和放能改进潜力 (EIP)。结果表明,EFF 和 EXEFF 的范围分别在 28.93%-9.11% 和 0.88%-6.62% 之间。随着 IR 功率和 RD 速度的增加,SEC(123.75-39.21 MJ/kg)、EXLOSS(3.97-2.97 MJ/kg)和 EIP(3.62-1.009 MJ/kg)下降,而 EFF 和 EXEFF 增加。研究结果表明,最佳红外干燥功率为 616.39 W,最佳旋转速度为 13.46 rpm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
期刊最新文献
Issue Information Issue Information Optimizing heat transfer in solar air heater ducts through staggered arrangement of discrete V-ribs Experimental investigation on an innovative serpentine channel-based nanofluid cooling technology for modular lithium-ion battery thermal management Utilizing multilayer perceptron for machine learning diagnosis in phase change material-based thermal management systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1