Fabrication of Flexible Double‐Gate Organic Thin Film Transistor For Tactile Applications

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-07-15 DOI:10.1002/admt.202400534
Mattia Concas, A. Mascia, S. Lai, Annalisa Bonfiglio, P. Cosseddu
{"title":"Fabrication of Flexible Double‐Gate Organic Thin Film Transistor For Tactile Applications","authors":"Mattia Concas, A. Mascia, S. Lai, Annalisa Bonfiglio, P. Cosseddu","doi":"10.1002/admt.202400534","DOIUrl":null,"url":null,"abstract":"In this work, the development of a flexible Double‐Gate (DG) organic thin film transistor (DG‐OTFT), and its employment is reported for the realization of multimodal tactile sensors. Due to the self‐encapsulation of the stacked DG architecture, highly stable organic transistors are obtained that show almost negligible degradation after 6 months. Moreover, such configuration is also very useful for the development of sensing devices. In the case, one of the two gates is used to bias and set the working point of the devices, whereas the second one is connected to a polyvinylidene fluoride(PVDF)‐capacitor, a pyro/piezoelectric material. It is demonstrated that the charge displacement induced by the PVDF capacitor due to an applied external pressure or due to a temperature variation led to a reproducible variation of the device's output current. Using this approach high‐performing multimodal tactile sensors are obtained with sensitivity to up to 241 nA N−1 and 442 nA °C−1 respectively.","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/admt.202400534","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the development of a flexible Double‐Gate (DG) organic thin film transistor (DG‐OTFT), and its employment is reported for the realization of multimodal tactile sensors. Due to the self‐encapsulation of the stacked DG architecture, highly stable organic transistors are obtained that show almost negligible degradation after 6 months. Moreover, such configuration is also very useful for the development of sensing devices. In the case, one of the two gates is used to bias and set the working point of the devices, whereas the second one is connected to a polyvinylidene fluoride(PVDF)‐capacitor, a pyro/piezoelectric material. It is demonstrated that the charge displacement induced by the PVDF capacitor due to an applied external pressure or due to a temperature variation led to a reproducible variation of the device's output current. Using this approach high‐performing multimodal tactile sensors are obtained with sensitivity to up to 241 nA N−1 and 442 nA °C−1 respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制作用于触觉应用的柔性双栅有机薄膜晶体管
本研究报告介绍了柔性双栅(DG)有机薄膜晶体管(DG-OTFT)的开发及其在实现多模态触觉传感器中的应用。由于堆叠式 DG 结构具有自封装功能,因此获得的有机晶体管非常稳定,6 个月后的降解几乎可以忽略不计。此外,这种结构对于开发传感设备也非常有用。在这种情况下,两个栅极中的一个用于偏置和设置器件的工作点,而第二个栅极则与聚偏二氟乙烯(PVDF)电容器(一种热释电/压电材料)相连。实验证明,聚偏二氟乙烯(PVDF)电容器因外部压力或温度变化而产生的电荷位移会导致设备输出电流发生可重复的变化。利用这种方法获得的高性能多模态触觉传感器的灵敏度分别高达 241 nA N-1 和 442 nA ℃-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
Ambipolar Charge Injection and Bright Light Emission in Hybrid Oxide/Polymer Transistors Doped with Poly(9-Vinylcarbazole) Based Polyelectrolytes (Adv. Mater. Technol. 20/2024) 3D Printed Supercapacitors Based on Laser-derived Hierarchical Nanocomposites of Bimetallic Co/Zn Metal-Organic Framework and Graphene Oxide (Adv. Mater. Technol. 20/2024) Hierarchical Composites Patterned via 3D Printed Cellular Fluidics (Adv. Mater. Technol. 20/2024) An Artificial Tactile Perception System with Spatio-Temporal Recognition Capability (Adv. Mater. Technol. 20/2024) Masthead: (Adv. Mater. Technol. 20/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1