Thin edges in cubic braces

Pub Date : 2024-07-14 DOI:10.1002/jgt.23150
Xiaoling He, Fuliang Lu
{"title":"Thin edges in cubic braces","authors":"Xiaoling He,&nbsp;Fuliang Lu","doi":"10.1002/jgt.23150","DOIUrl":null,"url":null,"abstract":"<p>For a vertex set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> in a graph, the <i>edge cut</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math> is the set of edges with exactly one end vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math>. An edge cut <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math> is <i>tight</i> if every perfect matching of the graph contains exactly one edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math>. A matching covered bipartite graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a <i>brace</i> if, for every tight cut <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mi>X</mi>\n \n <mo>|</mo>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $|X|=1$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mover>\n <mi>X</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>|</mo>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $|\\bar{X}|=1$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>X</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>=</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⧹</mo>\n \n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $\\bar{X}=V(G)\\setminus X$</annotation>\n </semantics></math>. Braces play an important role in Lovász's tight cut decomposition of matching covered graphs. The <i>bicontraction</i> of a vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> of degree two in a graph, with precisely two neighbours <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${v}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${v}_{2}$</annotation>\n </semantics></math>, consists of shrinking the set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>v</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\{{v}_{1},v,{v}_{2}\\}$</annotation>\n </semantics></math> to a single vertex. The <i>retract</i> of a matching covered graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is the graph obtained from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> by repeatedly the bicontractions of vertices of degree two. An edge <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> of a brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with at least six vertices is <i>thin</i> if the retract of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $G-e$</annotation>\n </semantics></math> is a brace. McCuaig showed that every brace of order at least six has a thin edge. In a brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order six or more, Carvalho, Lucchesi and Murty proved that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has two thin edges, and conjectured that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> contains two nonadjacent thin edges. Further, they made a stronger conjecture: There exists a positive constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> such that every brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n \n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation> $c|V(G)|$</annotation>\n </semantics></math> thin edges. By showing that, in every cubic brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order at least six, there exists a matching <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>M</mi>\n </mrow>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> of size at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n \n <mo>∕</mo>\n \n <mn>10</mn>\n </mrow>\n </mrow>\n <annotation> $|V(G)|\\unicode{x02215}10$</annotation>\n </semantics></math> such that every edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>M</mi>\n </mrow>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> is thin, we prove that the above two conjectures hold for cubic braces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a vertex set X $X$ in a graph, the edge cut ( X ) $\partial (X)$ is the set of edges with exactly one end vertex in X $X$ . An edge cut ( X ) $\partial (X)$ is tight if every perfect matching of the graph contains exactly one edge in ( X ) $\partial (X)$ . A matching covered bipartite graph G $G$ is a brace if, for every tight cut ( X ) $\partial (X)$ , | X | = 1 $|X|=1$ or | X ¯ | = 1 $|\bar{X}|=1$ , where X ¯ = V ( G ) X $\bar{X}=V(G)\setminus X$ . Braces play an important role in Lovász's tight cut decomposition of matching covered graphs. The bicontraction of a vertex v $v$ of degree two in a graph, with precisely two neighbours v 1 ${v}_{1}$ and v 2 ${v}_{2}$ , consists of shrinking the set { v 1 , v , v 2 } $\{{v}_{1},v,{v}_{2}\}$ to a single vertex. The retract of a matching covered graph G $G$  is the graph obtained from G $G$ by repeatedly the bicontractions of vertices of degree two. An edge e $e$ of a brace G $G$ with at least six vertices is thin if the retract of G e $G-e$ is a brace. McCuaig showed that every brace of order at least six has a thin edge. In a brace G $G$ of order six or more, Carvalho, Lucchesi and Murty proved that G $G$ has two thin edges, and conjectured that G $G$ contains two nonadjacent thin edges. Further, they made a stronger conjecture: There exists a positive constant c $c$ such that every brace G $G$ has c | V ( G ) | $c|V(G)|$ thin edges. By showing that, in every cubic brace G $G$ of order at least six, there exists a matching M $M$ of size at least | V ( G ) | 10 $|V(G)|\unicode{x02215}10$ such that every edge in M $M$ is thin, we prove that the above two conjectures hold for cubic braces.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
立方括号中的细边
对于图中的顶点集,边切是指在 ...中恰好有一个末端顶点的边的集合。如果图中的每个完美匹配都恰好包含一条边,则边切是紧密的。如果对于每个紧密切分 , 或 , 其中 , 一个匹配覆盖的二叉图是一个括号。在洛瓦兹对匹配覆盖图的紧切分解中,括号起着重要作用。在一个图中,度数为 2 的顶点恰好有两个相邻的 和 ,对该顶点的双收缩包括将该顶点集收缩为单个顶点。匹配覆盖图的缩减图是重复二度顶点的二缩减后得到的图。如果 的缩回是一个括号,那么至少有六个顶点的括号边就是细边。麦库艾格证明了每个至少有六个顶点的括号都有一条细边。卡瓦略、卢切西和穆尔蒂证明了阶数为六或更多的括号有两条细边,并猜想其中包含两条不相邻的细边。此外,他们还提出了一个更强的猜想:存在一个正常量,使得每一个长方体都有细边。通过证明在每一个阶数至少为六的立方括号中,存在一个大小至少为的匹配,使得其中的每一条边都是薄边,我们证明了上述两个猜想对于立方括号是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1