{"title":"Thin edges in cubic braces","authors":"Xiaoling He, Fuliang Lu","doi":"10.1002/jgt.23150","DOIUrl":null,"url":null,"abstract":"<p>For a vertex set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> in a graph, the <i>edge cut</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math> is the set of edges with exactly one end vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math>. An edge cut <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math> is <i>tight</i> if every perfect matching of the graph contains exactly one edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math>. A matching covered bipartite graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a <i>brace</i> if, for every tight cut <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mi>X</mi>\n \n <mo>|</mo>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $|X|=1$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mover>\n <mi>X</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>|</mo>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $|\\bar{X}|=1$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>X</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>=</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⧹</mo>\n \n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $\\bar{X}=V(G)\\setminus X$</annotation>\n </semantics></math>. Braces play an important role in Lovász's tight cut decomposition of matching covered graphs. The <i>bicontraction</i> of a vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> of degree two in a graph, with precisely two neighbours <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${v}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${v}_{2}$</annotation>\n </semantics></math>, consists of shrinking the set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>v</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\{{v}_{1},v,{v}_{2}\\}$</annotation>\n </semantics></math> to a single vertex. The <i>retract</i> of a matching covered graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is the graph obtained from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> by repeatedly the bicontractions of vertices of degree two. An edge <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> of a brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with at least six vertices is <i>thin</i> if the retract of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $G-e$</annotation>\n </semantics></math> is a brace. McCuaig showed that every brace of order at least six has a thin edge. In a brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order six or more, Carvalho, Lucchesi and Murty proved that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has two thin edges, and conjectured that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> contains two nonadjacent thin edges. Further, they made a stronger conjecture: There exists a positive constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> such that every brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n \n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation> $c|V(G)|$</annotation>\n </semantics></math> thin edges. By showing that, in every cubic brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order at least six, there exists a matching <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>M</mi>\n </mrow>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> of size at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n \n <mo>∕</mo>\n \n <mn>10</mn>\n </mrow>\n </mrow>\n <annotation> $|V(G)|\\unicode{x02215}10$</annotation>\n </semantics></math> such that every edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>M</mi>\n </mrow>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> is thin, we prove that the above two conjectures hold for cubic braces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For a vertex set in a graph, the edge cut is the set of edges with exactly one end vertex in . An edge cut is tight if every perfect matching of the graph contains exactly one edge in . A matching covered bipartite graph is a brace if, for every tight cut , or , where . Braces play an important role in Lovász's tight cut decomposition of matching covered graphs. The bicontraction of a vertex of degree two in a graph, with precisely two neighbours and , consists of shrinking the set to a single vertex. The retract of a matching covered graph is the graph obtained from by repeatedly the bicontractions of vertices of degree two. An edge of a brace with at least six vertices is thin if the retract of is a brace. McCuaig showed that every brace of order at least six has a thin edge. In a brace of order six or more, Carvalho, Lucchesi and Murty proved that has two thin edges, and conjectured that contains two nonadjacent thin edges. Further, they made a stronger conjecture: There exists a positive constant such that every brace has thin edges. By showing that, in every cubic brace of order at least six, there exists a matching of size at least such that every edge in is thin, we prove that the above two conjectures hold for cubic braces.