{"title":"Fatigue Assessment of Inclined Film Cooling Holes in Nickel-Based Single-Crystal Superalloy","authors":"Huanbo Weng, Cheng Luo, H. Yuan, Yuanxing Gu","doi":"10.2514/1.j064178","DOIUrl":null,"url":null,"abstract":"Fatigue tests of nickel-based single-crystal superalloys with inclined film cooling holes (FCHs) at 1000°C were conducted to investigate the effects of crystal orientation and to quantify the fatigue performance of the high-temperature structures. Fractographic analysis and computations of stress concentrations revealed competitive failure mechanisms between mode I crack nucleation and fatigue crack growth in crystallographic plastic slip systems, whereas crack nucleation around inclined FCHs can be characterized by the known fatigue criteria derived for smooth specimens. A life prediction model based on the crystal slip mechanism and the theory of critical distance was introduced to predict the fatigue life of FCH structures and provided reasonable accuracy for different FCH specimens.","PeriodicalId":7722,"journal":{"name":"AIAA Journal","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIAA Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.j064178","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Fatigue tests of nickel-based single-crystal superalloys with inclined film cooling holes (FCHs) at 1000°C were conducted to investigate the effects of crystal orientation and to quantify the fatigue performance of the high-temperature structures. Fractographic analysis and computations of stress concentrations revealed competitive failure mechanisms between mode I crack nucleation and fatigue crack growth in crystallographic plastic slip systems, whereas crack nucleation around inclined FCHs can be characterized by the known fatigue criteria derived for smooth specimens. A life prediction model based on the crystal slip mechanism and the theory of critical distance was introduced to predict the fatigue life of FCH structures and provided reasonable accuracy for different FCH specimens.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental results. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.