{"title":"Exploring the Microstructural Effect of FeCo Alloy on Carbon Microsphere Deposition and Enhanced Electromagnetic Wave Absorption","authors":"Xiaoshu Jia, Heng Zhang, Fang Liu, Qiaojun Yi, Chaolong Li, Xiao Wang, Mingxing Piao","doi":"10.3390/nano14141194","DOIUrl":null,"url":null,"abstract":"The rational design of magnetic carbon composites, encompassing both their composition and microstructure, holds significant potential for achieving exceptional electromagnetic wave-absorbing materials (EAMs). In this study, FeCo@CM composites were efficiently fabricated through an advanced microwave plasma-assisted reduction chemical vapor deposition (MPARCVD) technique, offering high efficiency, low cost, and energy-saving benefits. By depositing graphitized carbon microspheres, the dielectric properties were significantly enhanced, resulting in improved electromagnetic wave absorption performances through optimized impedance matching and a synergistic effect with magnetic loss. A systematic investigation revealed that the laminar-stacked structure of FeCo exhibited superior properties compared to its spherical counterpart, supplying a higher number of exposed edges and enhanced catalytic activity, which facilitated the deposition of uniform and low-defect graphitized carbon microspheres. Consequently, the dielectric loss performance of the FeCo@CM composites was dramatically improved due to increased electrical conductivity and the formation of abundant heterogeneous interfaces. At a 40 wt% filling amount and a frequency of 7.84 GHz, the FeCo@CM composites achieved a minimum reflection loss value of −58.2 dB with an effective absorption bandwidth (fE) of 5.13 GHz. This study presents an effective strategy for developing high-performance EAMs.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"60 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14141194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rational design of magnetic carbon composites, encompassing both their composition and microstructure, holds significant potential for achieving exceptional electromagnetic wave-absorbing materials (EAMs). In this study, FeCo@CM composites were efficiently fabricated through an advanced microwave plasma-assisted reduction chemical vapor deposition (MPARCVD) technique, offering high efficiency, low cost, and energy-saving benefits. By depositing graphitized carbon microspheres, the dielectric properties were significantly enhanced, resulting in improved electromagnetic wave absorption performances through optimized impedance matching and a synergistic effect with magnetic loss. A systematic investigation revealed that the laminar-stacked structure of FeCo exhibited superior properties compared to its spherical counterpart, supplying a higher number of exposed edges and enhanced catalytic activity, which facilitated the deposition of uniform and low-defect graphitized carbon microspheres. Consequently, the dielectric loss performance of the FeCo@CM composites was dramatically improved due to increased electrical conductivity and the formation of abundant heterogeneous interfaces. At a 40 wt% filling amount and a frequency of 7.84 GHz, the FeCo@CM composites achieved a minimum reflection loss value of −58.2 dB with an effective absorption bandwidth (fE) of 5.13 GHz. This study presents an effective strategy for developing high-performance EAMs.