Mathematical Modeling of Oxygen Transfer Using a Bubble Generator at a High Reynolds Number: A Partial Differential Equation Approach for Air-to-Water Transfer
{"title":"Mathematical Modeling of Oxygen Transfer Using a Bubble Generator at a High Reynolds Number: A Partial Differential Equation Approach for Air-to-Water Transfer","authors":"Mihaela Constantin, Cătălina Dobre, Mugurel Oprea","doi":"10.3390/inventions9040076","DOIUrl":null,"url":null,"abstract":"This paper presents the mathematical modeling of the oxygen transfer process using partial differential equations (PDEs). This process is crucial in various environmental and engineering applications, such as wastewater treatment, aeration systems, and natural water bodies, in order to maintain water quality. The authors solved the typical PDE for describing the change in oxygen concentration over time and present the developed model of the differential equation with the term “source”, indicating that the model could be used to optimize oxygen transfer in various environmental and engineering applications, contributing to improved water quality and system efficiency.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"88 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions9040076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the mathematical modeling of the oxygen transfer process using partial differential equations (PDEs). This process is crucial in various environmental and engineering applications, such as wastewater treatment, aeration systems, and natural water bodies, in order to maintain water quality. The authors solved the typical PDE for describing the change in oxygen concentration over time and present the developed model of the differential equation with the term “source”, indicating that the model could be used to optimize oxygen transfer in various environmental and engineering applications, contributing to improved water quality and system efficiency.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.