Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles

IF 5.1 Q1 ECOLOGY ISME communications Pub Date : 2024-07-12 DOI:10.1093/ismeco/ycae090
Jacqueline Comstock, Lillian C Henderson, Hilary G Close, Shuting Liu, K. Vergin, Alexandra Z Worden, Fabian Wittmers, Elisa R. Halewood, Stephen Giovannoni, C. A. Carlson
{"title":"Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles","authors":"Jacqueline Comstock, Lillian C Henderson, Hilary G Close, Shuting Liu, K. Vergin, Alexandra Z Worden, Fabian Wittmers, Elisa R. Halewood, Stephen Giovannoni, C. A. Carlson","doi":"10.1093/ismeco/ycae090","DOIUrl":null,"url":null,"abstract":"\n Passive sinking flux of particulate organic matter (POM) in the ocean plays a central role in the biological carbon pump and carbon export to the ocean’s interior. Particle-associated (PA) microbes colonize POM, producing “hotspots” of microbial activity. We evaluated variation in PA microbial communities to 500 m depth across four different particle size fractions (0.2 – 1.2 μm, 1.2 – 5 μm, 5 - 20 μm, >20 μm) collected using in situ pumps at the Bermuda Atlantic Time-series Study (BATS) site. In situ pump collections capture both sinking and suspended particles, complimenting previous studies using sediment or gel traps, which capture only sinking particles. Additionally, diagenetic state of size-fractionated particles was examined using isotopic signatures alongside microbial analysis. Our findings emphasize that different particle sizes contain distinctive microbial communities, and each size category experiences a similar degree of change in communities over depth, contradicting previous findings. The robust patterns observed in this study suggest that particle residence times may be long relative to microbial succession rates, indicating that many of the particles collected in this study may be slow sinking or neutrally buoyant. Alternatively, rapid community succession on sinking particles could explain the change between depths. Complementary isotopic analysis of particles revealed significant differences in composition between particles of different sizes and depths, indicative of organic particle transformation by microbial hydrolysis and metazoan grazing. Our results couple observed patterns in microbial communities with the diagenetic state of associated organic matter, and highlight unique successional patterns in varying particle sizes across depth.","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Passive sinking flux of particulate organic matter (POM) in the ocean plays a central role in the biological carbon pump and carbon export to the ocean’s interior. Particle-associated (PA) microbes colonize POM, producing “hotspots” of microbial activity. We evaluated variation in PA microbial communities to 500 m depth across four different particle size fractions (0.2 – 1.2 μm, 1.2 – 5 μm, 5 - 20 μm, >20 μm) collected using in situ pumps at the Bermuda Atlantic Time-series Study (BATS) site. In situ pump collections capture both sinking and suspended particles, complimenting previous studies using sediment or gel traps, which capture only sinking particles. Additionally, diagenetic state of size-fractionated particles was examined using isotopic signatures alongside microbial analysis. Our findings emphasize that different particle sizes contain distinctive microbial communities, and each size category experiences a similar degree of change in communities over depth, contradicting previous findings. The robust patterns observed in this study suggest that particle residence times may be long relative to microbial succession rates, indicating that many of the particles collected in this study may be slow sinking or neutrally buoyant. Alternatively, rapid community succession on sinking particles could explain the change between depths. Complementary isotopic analysis of particles revealed significant differences in composition between particles of different sizes and depths, indicative of organic particle transformation by microbial hydrolysis and metazoan grazing. Our results couple observed patterns in microbial communities with the diagenetic state of associated organic matter, and highlight unique successional patterns in varying particle sizes across depth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海洋颗粒粒度分馏表明有机物是由特定深度颗粒上的不同微生物群落处理的
海洋中颗粒有机物(POM)的被动下沉通量在生物碳泵和向海洋内部输出碳方面发挥着核心作用。颗粒相关(PA)微生物在 POM 中定植,形成微生物活动的 "热点"。我们评估了在百慕大大西洋时间序列研究(BATS)地点使用原位泵收集的四种不同粒径部分(0.2 - 1.2 μm、1.2 - 5 μm、5 - 20 μm、>20 μm)的 PA 微生物群落在 500 米深度的变化情况。原位泵收集可同时捕获下沉和悬浮颗粒,这是对以往使用沉积物或凝胶捕集器(仅捕获下沉颗粒)进行的研究的补充。此外,在进行微生物分析的同时,还利用同位素特征研究了大小分馏颗粒的成因状态。我们的研究结果表明,不同大小的颗粒含有不同的微生物群落,而且每种大小的颗粒随着深度的增加,群落的变化程度相似,这与之前的研究结果相矛盾。本研究观察到的强大模式表明,相对于微生物演替速率,颗粒的停留时间可能较长,这表明本研究收集的许多颗粒可能是缓慢下沉或中性浮力的。另外,下沉颗粒上的快速群落演替也可以解释不同深度之间的变化。对颗粒进行的补充同位素分析表明,不同大小和深度的颗粒之间的组成存在显著差异,这表明微生物水解和元古宙捕食使颗粒发生了有机转化。我们的研究结果将观察到的微生物群落模式与相关有机物的成岩状态结合起来,突出了不同深度不同大小颗粒的独特演替模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metagenomic insights into inhibition of soil microbial carbon metabolism by phosphorus limitation during vegetation succession. Introduction into natural environments shifts the gut microbiome of captivity-raised filter-feeding bivalves. Metagenomic and -transcriptomic analyses of microbial nitrogen transformation potential, and gene expression in Swiss lake sediments. Biological and experimental factors that define the effectiveness of microbial inoculation on plant traits: a meta-analysis. Rhizospheric miRNAs affect the plant microbiota.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1