{"title":"Optical Rogue Waves in Fiber Lasers","authors":"Hani J. Kbashi, Sergey V. Sergyev","doi":"10.3390/photonics11070657","DOIUrl":null,"url":null,"abstract":"Optical rogue waves are a nonlinear phenomenon that offers a unique opportunity to gain fundamental insights into wave interaction and behavior, and the evolution of complex systems. Optical systems serve as a suitable testbed for the well-controlled investigation of this natural phenomenon, which cannot be easily studied in an ocean environment. Additionally, such systems offer practical applications in telecommunications and optical signal processing, making this topic a vital area of research. Fiber lasers are considered the best candidates for demonstrating and investigating the emergence of optical rogue waves. In particular, they offer significant advantages in nonlinear dynamics due to faster field evolution and a higher number of events that can be recorded within a relatively short time. In this paper, we present the development mechanisms of optical rogue wave events. It was found that multimode vector instability, pulse–pulse interaction, and soliton rain are the main nonlinear dynamics leading to the formation of optical rogue wave events.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11070657","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical rogue waves are a nonlinear phenomenon that offers a unique opportunity to gain fundamental insights into wave interaction and behavior, and the evolution of complex systems. Optical systems serve as a suitable testbed for the well-controlled investigation of this natural phenomenon, which cannot be easily studied in an ocean environment. Additionally, such systems offer practical applications in telecommunications and optical signal processing, making this topic a vital area of research. Fiber lasers are considered the best candidates for demonstrating and investigating the emergence of optical rogue waves. In particular, they offer significant advantages in nonlinear dynamics due to faster field evolution and a higher number of events that can be recorded within a relatively short time. In this paper, we present the development mechanisms of optical rogue wave events. It was found that multimode vector instability, pulse–pulse interaction, and soliton rain are the main nonlinear dynamics leading to the formation of optical rogue wave events.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.