Recent Progress of Regulation Factors on the Deposition of Sodium Anodes

Conggu Tang, Chuyi Cai, Jindan Zhang, Feng Gao, Tao Hu, Zhu Pu, Jingzeng Weng, Mengqi Zhu
{"title":"Recent Progress of Regulation Factors on the Deposition of Sodium Anodes","authors":"Conggu Tang, Chuyi Cai, Jindan Zhang, Feng Gao, Tao Hu, Zhu Pu, Jingzeng Weng, Mengqi Zhu","doi":"10.1149/1945-7111/ad6290","DOIUrl":null,"url":null,"abstract":"\n As the demand for portable electronic and electric vehicles increase, it is necessary to pursue batteries with longer cycle life, higher energy density, and overall better performance. Because lithium sources are limited and lithium metal is expensive, it is necessary to find alternatives. Rechargeable sodium (Na) batteries have attracted great research interest because of their high natural abundance, low cost of sodium resources, and electrochemical similarity with lithium batteries. However, despite the potential to become the next generation of energy storage, the application of sodium metal batteries is mainly hindered by sodium dendrites and \"dead\" sodium, which reduce battery coulombic efficiency, shorten battery life, and even cause safety problems. The formation of Na dendrites is mainly due to the uncontrolled Na deposition behavior of sodium ions in the absence of nucleation site regulation. Therefore, the sodium deposition is crucial to the final status of Na anodes. Here, we first analyze the growth mechanism of sodium dendrites, then review the research progress of nucleation sites on inhibiting the formation of sodium dendrites, and finally discuss the practical application of sodium batteries and the future challenges of metallic sodium anodes, hoping to stimulate more research interests of researchers.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the demand for portable electronic and electric vehicles increase, it is necessary to pursue batteries with longer cycle life, higher energy density, and overall better performance. Because lithium sources are limited and lithium metal is expensive, it is necessary to find alternatives. Rechargeable sodium (Na) batteries have attracted great research interest because of their high natural abundance, low cost of sodium resources, and electrochemical similarity with lithium batteries. However, despite the potential to become the next generation of energy storage, the application of sodium metal batteries is mainly hindered by sodium dendrites and "dead" sodium, which reduce battery coulombic efficiency, shorten battery life, and even cause safety problems. The formation of Na dendrites is mainly due to the uncontrolled Na deposition behavior of sodium ions in the absence of nucleation site regulation. Therefore, the sodium deposition is crucial to the final status of Na anodes. Here, we first analyze the growth mechanism of sodium dendrites, then review the research progress of nucleation sites on inhibiting the formation of sodium dendrites, and finally discuss the practical application of sodium batteries and the future challenges of metallic sodium anodes, hoping to stimulate more research interests of researchers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钠阳极沉积调节因素的最新进展
随着便携式电子产品和电动汽车需求的增加,有必要追求循环寿命更长、能量密度更高、整体性能更好的电池。由于锂资源有限且锂金属价格昂贵,因此有必要寻找替代品。可充电钠(Na)电池因其天然含量高、钠资源成本低以及与锂电池电化学性质相似而引起了人们极大的研究兴趣。然而,尽管钠金属电池有望成为下一代储能电池,但其应用主要受到钠枝晶和 "死 "钠的阻碍,它们降低了电池的库仑效率,缩短了电池寿命,甚至引发安全问题。钠枝晶的形成主要是由于钠离子在缺乏成核位点调节的情况下不受控制的钠沉积行为。因此,钠沉积对 Na 阳极的最终状态至关重要。在此,我们首先分析了钠枝晶的生长机理,然后回顾了成核位点抑制钠枝晶形成的研究进展,最后探讨了钠电池的实际应用和金属钠阳极未来面临的挑战,希望能激发更多研究人员的研究兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing Cold Sintering to Fabricate Composite Polymer Electrolytes - A Paradigm Shift in Organic-Inorganic Material Assembly Investigating Plastic Deformation Between Silicon and Solid Electrolyte in All-Solid-State Batteries Using Operando X-ray Tomography Mild and Fast Chemical Presodiation of Na0.44MnO2 Facile Synthesis of U2Ti Intermetallic by Direct Electrochemical Reduction of UO2-TiO2 Composite in LiCl-Li2O Melt Binderless Electrodeposited NiCo2S4-MWCNT as a Potential Anode Material for Sodium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1