{"title":"Nonaqueous Synthesis of Pd/PdO-Functionalized NiFe2O4 Nanoparticles Enabled Enhancing n-Butanol Detection","authors":"Hongyang Wu, Chen Chen","doi":"10.3390/nano14141188","DOIUrl":null,"url":null,"abstract":"The efficient detection of n-butanol, which is in demand for highly sensitive materials, is essential for multiple applications. A nonaqueous method was applied to prepare NiFe2O4 nanoparticles (NPs) using benzyl alcohol as a solvent, which shows a size of 7.9 ± 1.6 nm and a large surface area of 82.23 m2/g. To further improve the sensing performance for n-butanol, Pd/PdO functionalization was sensitized with NiFe2O4 NPs. Gas sensing results demonstrate that the Pd/PdO-NiFe2O4 exhibits an enhanced response of 36.9 to 300 ppm n-butanol and a fast response and recovery time (18.2/17.6 s) at 260 °C. Furthermore, the Pd/PdO-NiFe2O4-based sensor possesses a good linear relationship between responses and the n-butanol concentration from 1 to 1000 ppm, and great selectivity against other volatile organic compounds (VOCs). The excellent sensing enhancement is attributed to the catalytic effects of Pd/PdO, the increase of oxygen vacancies, and the formation of heterojunction between PdO and NiFe2O4. Thus, this study offers an effective route for the synthesis of Pd/PdO-functionalized NiFe2O4 NPs to achieve n-butanol detection with excellent sensing performance.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"55 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14141188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The efficient detection of n-butanol, which is in demand for highly sensitive materials, is essential for multiple applications. A nonaqueous method was applied to prepare NiFe2O4 nanoparticles (NPs) using benzyl alcohol as a solvent, which shows a size of 7.9 ± 1.6 nm and a large surface area of 82.23 m2/g. To further improve the sensing performance for n-butanol, Pd/PdO functionalization was sensitized with NiFe2O4 NPs. Gas sensing results demonstrate that the Pd/PdO-NiFe2O4 exhibits an enhanced response of 36.9 to 300 ppm n-butanol and a fast response and recovery time (18.2/17.6 s) at 260 °C. Furthermore, the Pd/PdO-NiFe2O4-based sensor possesses a good linear relationship between responses and the n-butanol concentration from 1 to 1000 ppm, and great selectivity against other volatile organic compounds (VOCs). The excellent sensing enhancement is attributed to the catalytic effects of Pd/PdO, the increase of oxygen vacancies, and the formation of heterojunction between PdO and NiFe2O4. Thus, this study offers an effective route for the synthesis of Pd/PdO-functionalized NiFe2O4 NPs to achieve n-butanol detection with excellent sensing performance.