High-throughput phase field simulation and machine learning for predicting the breakdown performance of all-organic composites

Dong-Duan Liu, Qiao Li, Yujie Zhu, Bingxu Jiang, Tan Zeng, Hongxiao Yang, Jinliang He, Qi Li, Chao Yuan
{"title":"High-throughput phase field simulation and machine learning for predicting the breakdown performance of all-organic composites","authors":"Dong-Duan Liu, Qiao Li, Yujie Zhu, Bingxu Jiang, Tan Zeng, Hongxiao Yang, Jinliang He, Qi Li, Chao Yuan","doi":"10.1088/1361-6463/ad626e","DOIUrl":null,"url":null,"abstract":"\n All-organic dielectric polymers are materials of choice for modern power electronics and high-density energy storage, and their performance can be significantly improved by doping trace amounts of organic molecular semiconductors with strong electron-affinity energy to suppress charge conduction losses. Insight into the breakdown mechanism of polymers/organic molecular semiconductor composites is essential for the design of high-performance dielectric polymers. This study investigates the impact of the doping concentration of organic molecular semiconductors, dielectric constants, and trap depths on the breakdown performance of dielectric polymers under high temperature and electric fields. A modified phase-field model, incorporating deep traps and carriers’ coulomb capture radius, has been developed to facilitate high-throughput simulations of electrical breakdown in polymer/organic molecular semiconductor composites. This work accurately predicted the breakdown strength of all-organic composites using high-throughput phase-field simulation data as input for machine learning, which provides crucial theoretical support for designing all-organic composite dielectric polymers for energy storage capacitors under extreme conditions.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad626e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

All-organic dielectric polymers are materials of choice for modern power electronics and high-density energy storage, and their performance can be significantly improved by doping trace amounts of organic molecular semiconductors with strong electron-affinity energy to suppress charge conduction losses. Insight into the breakdown mechanism of polymers/organic molecular semiconductor composites is essential for the design of high-performance dielectric polymers. This study investigates the impact of the doping concentration of organic molecular semiconductors, dielectric constants, and trap depths on the breakdown performance of dielectric polymers under high temperature and electric fields. A modified phase-field model, incorporating deep traps and carriers’ coulomb capture radius, has been developed to facilitate high-throughput simulations of electrical breakdown in polymer/organic molecular semiconductor composites. This work accurately predicted the breakdown strength of all-organic composites using high-throughput phase-field simulation data as input for machine learning, which provides crucial theoretical support for designing all-organic composite dielectric polymers for energy storage capacitors under extreme conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高通量相场模拟和机器学习预测全有机复合材料的击穿性能
全有机介电聚合物是现代电力电子器件和高密度储能的首选材料,通过掺杂微量具有强电子亲和能的有机分子半导体来抑制电荷传导损耗,可以显著提高其性能。深入了解聚合物/有机分子半导体复合材料的击穿机理对于设计高性能介电聚合物至关重要。本研究探讨了有机分子半导体的掺杂浓度、介电常数和阱深度对介电聚合物在高温和电场下击穿性能的影响。研究开发了一种包含深阱和载流子库仑俘获半径的改良相场模型,以方便对聚合物/有机分子半导体复合材料的电击穿进行高通量模拟。这项研究利用高通量相场模拟数据作为机器学习的输入,准确预测了全有机复合材料的击穿强度,为在极端条件下设计用于储能电容器的全有机复合电介质聚合物提供了重要的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanical properties and cage transformations in CO2-CH4 heterohydrates: a molecular dynamics and machine learning study Reconfigurable narrow-band bandpass filter using electrically-coupled open-loop resonators based on liquid crystals Controllable location-dependent frequency conversion based on space-time transformation optics On-chip photonic digital-to-analog converter by phase-change-based bit control Spontaneous Anomalous Hall effects in magnetic and non-magnetic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1