{"title":"Kinetic effects on the interaction of counter-propagating plasma shocks inside an ICF hohlraum","authors":"Xu Zhang, Qing-kang Liu, Wen-shuai Zhang, E. Zhang, Xiaochuan Ning, Fan-qi Meng, Yi-peng Wang, Hongbo Cai, Shao-ping Zhu","doi":"10.1088/1741-4326/ad61fd","DOIUrl":null,"url":null,"abstract":"\n The interaction and interpenetration of two counter-propagating plasma shocks are investigated via hybrid fluid-PIC (particle-in-cell) simulations. This study seeks to probe the kinetic effects and ion collisions on the structure of colliding plasma shocks in complex multi-ion-species plasma, in particular, the presence of the expansion of high-Z plasma bubbles against the low-Z filled gas inside an ICF hohlraum. The superposition of shock wave results in a wave-like electric field in the downstream region. The electric field can further reduce the kinetic energy of the incoming particles, and modulate the ion density profile. It finally generates a new downstream platform of high temperature and high density. However, on the hundred-ps time scale, cumulative ion collisions can still significantly alter the structure of the shock wave and the reflection of ions by the shock front. This study will help to improve the predictions of hohlraum plasma states and the understanding of the shock wave interactions.","PeriodicalId":503481,"journal":{"name":"Nuclear Fusion","volume":"13 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad61fd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction and interpenetration of two counter-propagating plasma shocks are investigated via hybrid fluid-PIC (particle-in-cell) simulations. This study seeks to probe the kinetic effects and ion collisions on the structure of colliding plasma shocks in complex multi-ion-species plasma, in particular, the presence of the expansion of high-Z plasma bubbles against the low-Z filled gas inside an ICF hohlraum. The superposition of shock wave results in a wave-like electric field in the downstream region. The electric field can further reduce the kinetic energy of the incoming particles, and modulate the ion density profile. It finally generates a new downstream platform of high temperature and high density. However, on the hundred-ps time scale, cumulative ion collisions can still significantly alter the structure of the shock wave and the reflection of ions by the shock front. This study will help to improve the predictions of hohlraum plasma states and the understanding of the shock wave interactions.
通过混合流体-PIC(粒子在单元中)模拟研究了两个反向传播等离子体冲击的相互作用和相互渗透。这项研究试图探究复杂多离子种等离子体中碰撞等离子体冲击波结构的动力学效应和离子碰撞,特别是 ICF 霍尔阱内高 Z 等离子体气泡对低 Z 填充气体的膨胀。冲击波的叠加会在下游区域产生波状电场。电场可进一步降低进入粒子的动能,并调节离子密度曲线。最终产生一个新的高温、高密度下游平台。然而,在数百 ps 的时间尺度上,累积离子碰撞仍会显著改变冲击波的结构和冲击前沿对离子的反射。这项研究将有助于改进对霍尔姆等离子体状态的预测和对冲击波相互作用的理解。