Simulation-based Inference on Virtual Brain Models of Disorders

Meysam Hashemi, Abolfazl Ziaeemehr, M. Woodman, Jan Fousek, S. Petkoski, V. Jirsa
{"title":"Simulation-based Inference on Virtual Brain Models of Disorders","authors":"Meysam Hashemi, Abolfazl Ziaeemehr, M. Woodman, Jan Fousek, S. Petkoski, V. Jirsa","doi":"10.1088/2632-2153/ad6230","DOIUrl":null,"url":null,"abstract":"\n Connectome-based models, also known as Virtual Brain Models (VBMs), have been well established in network neuroscience to investigate pathophysiological causes underlying a large range of brain diseases. The integration of an individual's brain imaging data in VBMs has improved patient-specific predictivity, although Bayesian estimation of spatially distributed parameters remains challenging even with state-of-the-art Monte Carlo sampling. VBMs imply latent nonlinear state space models driven by noise and network input, necessitating advanced probabilistic machine learning techniques for widely applicable Bayesian estimation. Here we present Simulation-based Inference on Virtual Brain Models (SBI-VBMs), and demonstrate that training deep neural networks on both spatio-temporal and functional features allows for accurate estimation of generative parameters in brain disorders. The systematic use of brain stimulation provides an effective remedy for the non-identifiability issue in estimating the degradation limited to smaller subset of connections. By prioritizing model structure over data, we show that the hierarchical structure in SBI-VBMs renders the inference more effective, precise and biologically plausible. This approach could broadly advance precision medicine by enabling fast and reliable prediction of patient-specific brain disorders.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"122 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad6230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Connectome-based models, also known as Virtual Brain Models (VBMs), have been well established in network neuroscience to investigate pathophysiological causes underlying a large range of brain diseases. The integration of an individual's brain imaging data in VBMs has improved patient-specific predictivity, although Bayesian estimation of spatially distributed parameters remains challenging even with state-of-the-art Monte Carlo sampling. VBMs imply latent nonlinear state space models driven by noise and network input, necessitating advanced probabilistic machine learning techniques for widely applicable Bayesian estimation. Here we present Simulation-based Inference on Virtual Brain Models (SBI-VBMs), and demonstrate that training deep neural networks on both spatio-temporal and functional features allows for accurate estimation of generative parameters in brain disorders. The systematic use of brain stimulation provides an effective remedy for the non-identifiability issue in estimating the degradation limited to smaller subset of connections. By prioritizing model structure over data, we show that the hierarchical structure in SBI-VBMs renders the inference more effective, precise and biologically plausible. This approach could broadly advance precision medicine by enabling fast and reliable prediction of patient-specific brain disorders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于虚拟大脑模型的疾病模拟推理
基于连接体的模型,也称为虚拟脑模型(VBM),已在网络神经科学领域得到广泛应用,用于研究多种脑部疾病的病理生理原因。在 VBM 中整合个人的脑成像数据提高了针对特定患者的预测能力,但即使采用最先进的蒙特卡洛采样,对空间分布参数进行贝叶斯估计仍然具有挑战性。VBM 意味着由噪声和网络输入驱动的潜在非线性状态空间模型,需要先进的概率机器学习技术来进行广泛适用的贝叶斯估计。在此,我们提出了基于虚拟脑模型的模拟推理(SBI-VBMs),并证明根据时空和功能特征训练深度神经网络可以准确估计脑部疾病的生成参数。系统性地使用脑刺激可以有效解决在估算局限于较小连接子集的退化时的不可识别性问题。通过优先考虑模型结构而非数据,我们证明了 SBI-VBM 中的分层结构能使推断更有效、更精确、更符合生物学原理。这种方法可以快速、可靠地预测特定患者的脑部疾病,从而广泛推进精准医疗的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Benefit of Attention in Inverse Design of Thin Films Filters Predictive Models for Inorganic Materials Thermoelectric Properties with Machine Learning Benchmarking machine learning interatomic potentials via phonon anharmonicity Application of Deep Learning-based Fuzzy Systems to Analyze the Overall Risk of Mortality in Glioblastoma Multiforme Formation Energy Prediction of Neutral Single-Atom Impurities in 2D Materials using Tree-based Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1