D. Mazur, O. Pariiska, Y. Kurys', Vyacheslav Koshechko, V. Pokhodenko
{"title":"Facile Carbothermal Synthesis of Metal Phosphides-Based Multifunctional Electrocatalysts via Polyaniline Doped with Phosphoric Acid","authors":"D. Mazur, O. Pariiska, Y. Kurys', Vyacheslav Koshechko, V. Pokhodenko","doi":"10.1149/1945-7111/ad6215","DOIUrl":null,"url":null,"abstract":"\n Transition metal phosphides (TMPs) and their composites are promising non-platinum electrocatalysts for hydrogen evolution (HER), oxygen evolution (OER), and oxygen reduction (ORR) reactions. But traditional methods to obtain these electrocatalysts are usually multi-step and include the participation of hazardous phosphorus compounds during phosphidation. Here, the possibility of using a polyaniline doped with phosphoric acid (PANI∙H3PO4) – as a source of C, N and P simultaneously - to obtain composites based on N,P-doped carbon and nano- and/or submicron TMP particles as HER, OER and ORR electrocatalysts is demonstrated. The pyrolysis of PANI∙H3PO4 together with Co, Ni, Mo, or Fe salt allows the formation of such composite electrocatalysts by the carbon thermal reduction route. Regardless of the pH of the electrolyte, the MoP-based electrocatalyst is characterized in HER by the smallest Tafel slope and overpotential of hydrogen evolution and also exhibits high stability during long-term operation. At the same time, other composites are multifunctional electrocatalysts possessing activity not only in HER, but also in OER and ORR. The proposed approach can be a starting point for a simple, universal in choice of d-metal, and environmentally attractive preparation of multifunctional TMP-based electrocatalysts with further improvement of their performance.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal phosphides (TMPs) and their composites are promising non-platinum electrocatalysts for hydrogen evolution (HER), oxygen evolution (OER), and oxygen reduction (ORR) reactions. But traditional methods to obtain these electrocatalysts are usually multi-step and include the participation of hazardous phosphorus compounds during phosphidation. Here, the possibility of using a polyaniline doped with phosphoric acid (PANI∙H3PO4) – as a source of C, N and P simultaneously - to obtain composites based on N,P-doped carbon and nano- and/or submicron TMP particles as HER, OER and ORR electrocatalysts is demonstrated. The pyrolysis of PANI∙H3PO4 together with Co, Ni, Mo, or Fe salt allows the formation of such composite electrocatalysts by the carbon thermal reduction route. Regardless of the pH of the electrolyte, the MoP-based electrocatalyst is characterized in HER by the smallest Tafel slope and overpotential of hydrogen evolution and also exhibits high stability during long-term operation. At the same time, other composites are multifunctional electrocatalysts possessing activity not only in HER, but also in OER and ORR. The proposed approach can be a starting point for a simple, universal in choice of d-metal, and environmentally attractive preparation of multifunctional TMP-based electrocatalysts with further improvement of their performance.