Ensemble hydrological predictions at an intraseasonal scale through a statistical–dynamical downscaling approach over southwestern Amazonia

Weslley de Brito Gomes, Praky Satyamurty, F. W. Correia, S. C. Chou, A. Fleischmann, F. Papa, Leonardo Alves Vergasta, A. Lyra
{"title":"Ensemble hydrological predictions at an intraseasonal scale through a statistical–dynamical downscaling approach over southwestern Amazonia","authors":"Weslley de Brito Gomes, Praky Satyamurty, F. W. Correia, S. C. Chou, A. Fleischmann, F. Papa, Leonardo Alves Vergasta, A. Lyra","doi":"10.2166/wcc.2024.262","DOIUrl":null,"url":null,"abstract":"\n \n We developed and analyzed the performance of an ensemble forecasting system for the Madeira River basin, the largest sub-basin of the Amazon, with forecasts up to 30 days under different hydrometeorological conditions. We used outputs from the regional Eta model of precipitation and global climatological data as inputs to a large-scale hydrological model. Bias correction of precipitation through quantile mapping significantly improved the results, achieving a hit rate >70%. The system demonstrated the ability to discriminate between high, medium, and low flow conditions. Forecast performance is better for larger catchment areas. This system is expected to increase decision-making efficiency for flood and drought situations in the largest Amazon tributary.","PeriodicalId":506949,"journal":{"name":"Journal of Water and Climate Change","volume":"52 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2024.262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We developed and analyzed the performance of an ensemble forecasting system for the Madeira River basin, the largest sub-basin of the Amazon, with forecasts up to 30 days under different hydrometeorological conditions. We used outputs from the regional Eta model of precipitation and global climatological data as inputs to a large-scale hydrological model. Bias correction of precipitation through quantile mapping significantly improved the results, achieving a hit rate >70%. The system demonstrated the ability to discriminate between high, medium, and low flow conditions. Forecast performance is better for larger catchment areas. This system is expected to increase decision-making efficiency for flood and drought situations in the largest Amazon tributary.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过统计动态降尺度方法对亚马孙西南部地区进行季节内尺度的集合水文预测
我们开发并分析了马德拉河流域的集合预报系统的性能,该流域是亚马逊河最大的子流域,在不同的水文气象条件下可进行长达 30 天的预报。我们将区域 Eta 降水模型的输出结果和全球气候数据作为大规模水文模型的输入。通过量子图对降水量进行偏差校正,显著改善了结果,命中率大于 70%。该系统展示了区分大、中、小流量条件的能力。对于较大的集水区,预测效果更好。该系统有望提高亚马逊最大支流洪水和干旱情况下的决策效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bed shear stress distribution across a meander path Impact of El Niño, Indian Ocean dipole, and Madden–Julian oscillation on land surface temperature in Kuching City Sarawak, during the periods of 1997/1998 and 2015/2016: a pilot study Comprehensive economic losses assessment of storm surge disasters using open data: a case study of Zhoushan, China Determination of the effects of irrigation with recycled wastewater and biochar treatments on crop and soil properties in maize cultivation Determination of climate change impacts on Mediterranean streamflows: a case study of Edremit Eybek Creek, Türkiye
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1